首页> 外文期刊>Journal of loss prevention in the process industries >Numerical study of cellular detonation structures of methane mixtures
【24h】

Numerical study of cellular detonation structures of methane mixtures

机译:甲烷混合物细胞爆炸结构的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

A two-step model of the kinetics of detonation combustion of methane in mixtures with an oxygen and air has been developed. The proposed model of the kinetics of detonation combustion of methane appears to be reasonably accurate within the confines of the assumptions and is consistent with the second law of thermodynamics. Constants of the model have a clear physical meaning. The model is useful for multi-dimensional numerical simulations of detonation processes. A numerical simulation of a two-dimensional (2D) structure of the detonation wave (DW) in a stoichiometric methane air mixture in a wide range of channel height has been performed. The changes in the 2D structure of the self-sustaining DW on variations of the height of the channel have been studied. From the analysis of the flow structure, the dominant size of the detonation cell for stoichiometric methane air mixture determines to be 34 +/- 1 cm, and 0.3 divided by 0.35 cm for methane oxygen mixture. These values are in good agreement with all known experimental data. The transverse size of the detonation cell is a characteristic size of the DW front structure. Based on this value, it is possible to determine such parameters of detonation as critical conditions of detonation combustion, the critical energy of direct initiation, detonation propagation limits, etc., i.e. to estimate the detonation hazard of gaseous mixture and its use in various schemes of detonation propulsion systems. The 2D simulations were reproduced the DW irregular cellular structure with all its main features observed in the experiment: a chaotic uncoordinated movement of the main transverse waves; the presence of a fine (secondary) cell structure at the transverse waves themselves; the existence of numerous secondary transverse waves at the leading shock front, forming a hierarchy of the decreasing the size DW front perturbations; and a significant number of pockets of the unburned mixture at a considerable distance behind the DW front, etc. Numerical simulation of irregular structure of the multi-front DW has been conducted for a real hydrocarbon air mixture with an adequate description of all its thermal and chemical properties. (C) 2015 Elsevier Ltd. All rights reserved.
机译:建立了氧气和空气混合物中甲烷爆轰燃烧动力学的两步模型。拟议的甲烷爆炸燃烧动力学模型在假设范围内似乎是相当准确的,并且与热力学第二定律一致。模型的常数具有明确的物理意义。该模型可用于爆轰过程的多维数值模拟。在广泛的通道高度范围内,对化学计量的甲烷空气混合物中的爆炸波(DW)的二维(2D)结构进行了数值模拟。研究了自持DW的2D结构随通道高度的变化。从流动结构的分析,对于化学计量的甲烷空气混合物,爆轰室的主要尺寸确定为34 +/- 1 cm,对于甲烷氧气混合物,其确定为0.3除以0.35 cm。这些值与所有已知的实验数据高度吻合。爆炸室的横向尺寸是DW前部结构的特征尺寸。基于此值,可以确定诸如爆炸燃烧的临界条件,直接引发的临界能量,爆炸传播极限等的爆炸参数,即估算气态混合物的爆炸危险及其在各种方案中的使用爆推进系统。二维模拟重现了DW不规则蜂窝结构,并在实验中观察到了其所有主要特征:主横波的混沌不协调运动;横波本身存在精细的(次级)细胞结构;在前激波前部存在大量次要横波,从而形成了减小DW前部扰动大小的层次结构;以及在DW前沿后面相当远的距离处有大量未燃烧混合物的气穴等。已经对真正的烃类空气混合物进行了多前沿DW不规则结构的数值模拟,并充分描述了其所有热和化学性质。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号