首页> 外文期刊>Journal of marine systems: journal of the European Association of Marine Sciences and Techniques >Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic
【24h】

Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic

机译:跨越北冰洋大气-冰-水界面的碳酸盐化学动力学和二氧化碳通量:北极的太平洋地区

获取原文
获取原文并翻译 | 示例
           

摘要

Climatic changes in the Northern Hemisphere have led to remarkable environmental changes in the Arctic Ocean, which is surrounded by permafrost. These changes include significant shrinking of sea-ice cover in summer, increased time between sea-ice break-up and freeze-up, and Arctic surface water freshening and warming associated with melting sea-ice, thawing permafrost, and increased runoff. These changes are commonly attributed to the greenhouse effect resulting from increased atmospheric carbon dioxide (CO2) concentration and other non-CO2 radiatively active gases (methane, nitrous oxide). The greenhouse effect should be most pronounced in the Arctic where the largest air CO2 concentrations and winter-summer variations in the world for a clean background environment were detected. However, the air-land-shelf interaction in the Arctic has a substantial impact on the composition of the overlying atmosphere; as the permafrost thaws, a significant amount of old terrestrial carbon becomes available for biogeochemical cycling and oxidation to CO2. The Arctic Ocean's role in determining regional CO2 balance has been ignored, because of its small size (only similar to 4% of the world ocean area) and because its continuous sea-ice cover is considered to impede gaseous exchange with the atmosphere so efficiently that no global climate models include CO2 exchange over sea-ice. In this paper we show that: (1) the Arctic shelf seas (the Laptev and East-Siberian seas) may become a strong source of atmospheric CO2 because of oxidation of bio-available eroded terrestrial carbon and river transport; (2) the Chukchi Sea shelf exhibits the strong uptake of atmospheric CO2; (3) the sea-ice melt ponds and open brine channels form an important spring/surnmer air CO2 sink that also must be included in any Arctic regional CO2 budget. Both the direction and amount Of CO2 transfer between air and sea during open water season may be different from transfer during freezing and thawing, or during winter when CO2 accumulates beneath Arctic sea-ice; (4) direct measurements beneath the sea ice gave two initial results. First, a drastic pCO(2) decrease from 410 patin to 288 gatm, which was recorded in February-March beneath the fast ice near Barrow using the SAMI-CO2 sensor, may reflect increased photosynthetic activity beneath sea-ice just after polar sunrise. Second, new measurements made in summer 2005 beneath the sea ice in the Central Basin show relatively high values of PCO2 ranging between 425 mu atm and 475 mu atm, values, which are larger than the mean atmospheric value in the Arctic in summertime. The sources of those high values are supposed to be: high rates of bacterial respiration, import of the Upper Halocline Water (UHW) from the Chukchi Sea (CS) where values Of PCO2 range between 400 and 600 mu atm, a contribution from the Lena river plume, or any combination of these sources. (c) 2006 Elsevier B.V All rights reserved.
机译:北半球的气候变化导致北冰洋被永久冻土包围,环境发生了显着变化。这些变化包括夏季海冰覆盖面明显缩小,海冰破裂和冻结之间的时间增加,北极海冰融化,永久冻土融化和径流增加相关的地表水清新和变暖。这些变化通常归因于大气中二氧化碳(CO2)浓度增加和其他非CO2辐射活性气体(甲烷,一氧化二氮)引起的温室效应。在北极地区,最明显的温室效应是在清洁的背景环境下,世界上最大的空气二氧化碳浓度和冬夏变化。但是,北极的空地-陆架相互作用对上覆大气的组成有重大影响;随着多年冻土融化,大量的旧陆地碳可用于生物地球化学循环和氧化成二氧化碳。北冰洋的面积很小(仅占世界海洋面积的4%),并且由于其连续的海冰覆盖被认为阻碍了与大气的气体交换,以至于其效率很高,因此被忽略了。没有全球气候模型包括通过海冰进行的二氧化碳交换。在本文中,我们表明:(1)由于生物可利用的侵蚀性陆地碳的氧化和河流的运输,北极的陆架海(拉普捷夫海和东西伯利亚海)可能成为大气CO2的重要来源; (2)楚科奇海架子显示出对大气中CO2的强烈吸收; (3)海冰融化池和开放的盐水通道构成重要的春季/夏季空气CO2汇,这也必须包括在任何北极地区的CO2预算中。在开放水域,空气和海洋之间的CO2传输的方向和数量可能与冻结和解冻期间或冬季在北极海冰下积聚的CO2的传输方向不同。 (4)在海冰下进行直接测量得出了两个初步结果。首先,使用SAMI-CO2传感器在2月至3月在巴罗附近的快速冰下记录的pCO(2)从410 patin急剧降低到288 gatm,这可能反映了极地日出后海冰下的光合作用增加。其次,2005年夏季在中部盆地海冰下进行的新测量显示,PCO2值相对较高,介于425μm至475μatm之间,该值大于夏季北极的平均大气值。这些高值的来源可能是:细菌呼吸率高,从楚科奇海(CS)进口上海水(UHW),PCO2值在400至600亩大气压之间,这是Lena的贡献河羽,或这些来源的任何组合。 (c)2006 Elsevier B.V保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号