首页> 外文期刊>Journal of Materials Science >A continuum model for remodeling in living structures
【24h】

A continuum model for remodeling in living structures

机译:居住结构改造的连续模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A new remodeling theory accounting for mechanically driven collagen fiber reorientation in cardiovascular tissues is proposed. The constitutive equations for the living tissues are motivated by phenomenologically based microstructural considerations on the collagen fiber level. Homogenization from this molecular microscale to the macroscale of the cardiovascular tissue is performed via the concept of chain network models. In contrast to purely invariant-based macroscopic approaches, the present approach is thus governed by a limited set of physically motivated material parameters. Its particular feature is the underlying orthotropic unit cell which inherently incorporates transverse isotropy and standard isotropy as special cases. To account for mechanically induced remodeling, the unit cell dimensions are postulated to change gradually in response to mechanical loading. From an algorithmic point of view, rather than updating vector-valued microstructural directions, as in previously suggested models, we update the scalar-valued dimensions of this orthotropic unit cell with respect to the positive eigenvalues of a tensorial driving force. This update is straightforward, experiences no singularities and leads to a stable and robust remodeling algorithm. Embedded in a finite element framework, the algorithm is applied to simulate the uniaxial loading of a cylindrical tendon and the complex multiaxial loading situation in a model artery. After investigating different material and spatial stress and strain measures as potential driving forces, we conclude that the Cauchy stress, i.e., the true stress acting on the deformed configuration, seems to be a reasonable candidate to drive the remodeling process.
机译:提出了一种新的重塑理论,该理论考虑了心血管组织中机械驱动的胶原纤维重新定向。对于生物组织的本构方程是由基于现象学的基于微观结构的胶原纤维水平的考虑所激发的。从这种分子微观尺度到心血管组织宏观尺度的均质化是通过链网络模型的概念进行的。与基于纯粹不变性的宏观方法相反,本方法因此由一组有限的物理动机材料参数控制。它的特殊功能是基本的正交异性晶胞,在特殊情况下固有地结合了横向各向同性和标准各向同性。为了考虑机械诱导的重塑,假定晶胞尺寸响应于机械载荷而逐渐变化。从算法的角度来看,我们没有像以前建议的模型那样更新矢量值的微结构方向,而是相对于张量驱动力的正特征值更新了该正交异性晶胞的标量值尺寸。此更新很简单,没有奇异之处,并导致了稳定而强大的重塑算法。该算法嵌入有限元框架中,用于模拟圆柱状肌腱的单轴载荷和模型动脉的复杂多轴载荷情况。在研究了不同的材料和空间应力及应变措施作为潜在驱动力后,我们得出结论,柯西应力,即作用于变形构型的真实应力,似乎是驱动重塑过程的合理候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号