首页> 外文期刊>Journal of Materials Processing Technology >Prediction of heat-affected zone using Grey theory
【24h】

Prediction of heat-affected zone using Grey theory

机译:基于灰色理论的热影响区预测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The amount of deformation and the residual stress, which influence welded plates, are related directly to three aspects of the welding process: the method of heat input; the welding speed and the geometrical conditions; limitations of the weldment. The temperature behavior in the heat-affected zone usually determines the strength of the welded plate as a whole. It is important to carry out research into the temperature behavior in this zone, not only because the temperature in this area influences the material composition (the continuous cooling transformation (CCT) diagram) but also because it can be used to supply a feedback signal to the welding system for monitoring and control of the welding process. This study uses Grey theory to predict the temperature message of the heat-affected zone. The first stage of the project is to use differential equations to construct a two-dimensional temperature model of the dynamic conditions during the welding process, and then to model the temperature distribution of the dynamic welding temperature field in order to obtain the range of the heat-affected zone. In addition, the modeled message of the heat-affected zone around the welded bead, and temperature data collected at a dynamic state measurement point, which moves at the same uniform speed as the heat source, are used as inputs to a Grey theory predictor. Using a G(1, 1) modeling method and a G(1, 1) unified-dimensional new message method the temperature behavior in the heat-affected zone is then predicted. The number of temperature data points collected and input to the Grey predictor models varies between 5 and 15. The weld heat input source is rated at 2800-5400 W. The welding speed is 0.6-1.2 cm/s. From the results, it is learnt that the higher the number of temperature data points input to the predictor models, the more precise is the prediction obtained. Additionally, it is found that the G(1, 1) unified-dimensional new message method is more accurate than the G(1, 1) method of prediction, and that the average error is approximately 0.2-0.3 percent.
机译:影响焊接板的变形量和残余应力与焊接过程的三个方面直接相关:热量输入方法;焊接方法;焊接方法。焊接速度和几何条件;焊件的局限性。热影响区中的温度行为通常决定了整个焊接板的强度。重要的是,对该区域的温度行为进行研究非常重要,这不仅是因为该区域的温度会影响材料成分(连续冷却转变(CCT)图),而且因为它可以用来向该区域提供反馈信号。用于监视和控制焊接过程的焊接系统。本研究使用灰色理论预测热影响区的温度信息。该项目的第一阶段是使用微分方程构建焊接过程中动态条件的二维温度模型,然后对动态焊接温度场的温度分布进行建模,以获得热量的范围。受影响的区域。此外,焊缝周围热影响区的建模消息以及在动态状态测量点收集的温度数据(以与热源相同的均匀速度移动)被用作灰色理论预测器的输入。使用G(1,1)建模方法和G(1,1)统一维新消息方法,然后可以预测热影响区中的温度行为。收集并输入到Gray预测器模型的温度数据点的数量在5到15之间变化。焊接热输入源的额定功率为2800-5400W。焊接速度为0.6-1.2 cm / s。从结果得知,输入到预测器模型的温度数据点的数量越多,获得的预测越精确。此外,发现G(1,1)统一维新消息方法比G(1,1)预测方法更准确,平均误差约为0.2-0.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号