...
首页> 外文期刊>Journal of Materials Processing Technology >Near net-shape manufacturing of alumina/zirconia high temperature ceramics with fine scale aligned multiphase microstructures using co-extrusion
【24h】

Near net-shape manufacturing of alumina/zirconia high temperature ceramics with fine scale aligned multiphase microstructures using co-extrusion

机译:使用共挤出法以精细尺度排列的多相微结构近乎最终形状制造氧化铝/氧化锆高温陶瓷

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Structural materials capable of operating up to 1400 deg C, in air and without cooling, are produced using sol-based technology which involves the extrusion, at room temperature, of a two-phase material (Al_2O_3/ZrO_2) resulting in an aligned bi-phase structure which is then multiple re-extruded to reduce the widths of the phases. Two sol-based pastes (of differing chemistry) are co-extruded in parallel, and layed-up in closed-packed linear array to form a heterogeneous macro-plug for subsequent extrusion. The second and third extrusion steps produce a filament with markedly reduced lateral paste dimensions provided that the flow properties of the chemically different pastes are similar. The resulting extrudates that are in the form of continuous green monofilaments are subsequently laid up in a mould where the structure is pressed and consolidated into the desired shape, and then pressureless sintered in air to form the multiphase component. The developed process allows the microstructure to be controlled at a nanometer scale within each extruded filament. It is also demonstrated that this novel process is a powerful tool to obtain damage-tolerant components if the green monofilaments are coated with ZrO_2 prior to each step of extrusion and lay-up.
机译:使用基于溶胶的技术生产能够在空气中且无需冷却的情况下在高达1400℃的温度下工作的结构材料,该技术涉及在室温下挤压两相材料(Al_2O_3 / ZrO_2),从而形成对齐的双然后将其多次挤压以减小相的宽度。将两种基于溶胶的(化学性质不同的)糊料共挤出,并以密排线性阵列排列,以形成用于后续挤出的异质宏塞。如果化学上不同的糊料的流动性质相似,则第二和第三挤出步骤将产生具有明显减小的横向糊料尺寸的长丝。随后将得到的呈连续生单丝形式的挤出物置于模具中,在其中将结构压制并固结为所需形状,然后在空气中进行无压烧结以形成多相组分。开发的工艺可以在每根挤出的长丝内以纳米级控制微观结构。还证明了,如果在挤出和铺网的每个步骤之前用ZrO_2涂覆绿色单丝,这种新颖的方法将是获得耐损伤成分的有力工具。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号