首页> 外文期刊>Journal of Materials Processing Technology >Development and application of constitutive equations for the multiple-stand hot rolling of Al-alloys
【24h】

Development and application of constitutive equations for the multiple-stand hot rolling of Al-alloys

机译:铝合金多机架热轧本构方程的开发与应用

获取原文
获取原文并翻译 | 示例
           

摘要

The dominant tasks for a confident use of a rolling process simulation is the determination of material data in the required accuracy and the formulation of material models which incorporate all important material features.The first aspect is the measurement and mathematical treatment of flow stress data, where the main issue is the compensation of adiabatic heating, friction and heterogeneous deformation. A procedure for performing these corrections is presented in this paper. The second aspect is the development of a physically based constitutive model, capable of tracing characteristic variables of state trough a multiple-pass rolling schedule in order to fully describe the forming history of a given material element. A four-internal-state-variable model (4IVM) is developed which computes the development of edge and screw dislocations both in the cell walls and interiors during forming and during holding times at elevated temperature. The magnitude of flow stress is derived from these internal variables. Furthermore, the current dislocation density is taken as driving force for recrystallisation, causing a coupling of recovery and recrystallisation mechanisms. Recrystallised fractions, originated at different points of time, are treated as individual substructures in subsequent deformation steps. Thus, the interactions of strain hardening, dynamic and static recovery and recrystallisation are formulated and collectively affect the flow stress.The effect of using the derived constitutive model within the thermal and mechanical simulation of rolling operations is shown by application to rolling trials on a laboratory mill and on an industrial four-stand mill by the example of alloy AA3104.
机译:可靠地使用轧制过程模拟的主要任务是确定所需精度的材料数据,并制定包含所有重要材料特征的材料模型。第一个方面是流应力数据的测量和数学处理,其中主要问题是绝热加热,摩擦和非均匀变形的补偿。本文介绍了执行这些校正的过程。第二方面是基于物理的本构模型的发展,该模型能够通过多道次轧制计划跟踪状态的特征变量,以便充分描述给定材料元素的形成历史。建立了一个四个内部状态变量模型(4IVM),该模型计算了在成形过程中以及在高温下的保持时间中,细胞壁和内部的边缘和螺钉位错的发展。流动应力的大小是从这些内部变量得出的。此外,电流位错密度被用作重结晶的驱动力,从而引起恢复和重结晶机制的耦合。源自不同时间点的重结晶部分在后续变形步骤中被视为单个子结构。因此,公式化了应变硬化,动态和静态恢复以及再结晶的相互作用,共同影响了流动应力。通过在实验室的轧制试验中的应用,证明了在轧制过程的热力学和力学模拟中使用导出的本构模型的效果。磨和在工业四机架轧机上以AA3104合金为例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号