...
首页> 外文期刊>Journal of Materials Processing Technology >Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets
【24h】

Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets

机译:织构成分对铝合金薄板塑性各向异性和成形性的影响

获取原文
获取原文并翻译 | 示例

摘要

Plastic anisotropy of the typical preferred orientations appearing in textured aluminium alloy sheetshas been analyzed on the basis of the continuum mechanics of textured polycrystals (CMTP)anisotropic yield function proposed by Jonas et al. In addition, in-plane plastic anisotropy ofdifferently textured aluminium alloy sheets has been predicted and compared with the experimentalresults. Three components of {011}<112>, {123}<634> and {112}<111>, which are the mainconponents of retained texture, display the short and thick yield loci in the RD-TD orthogonalcoordinates and slender ones in the coordinates rotated by 45° form the rolling direction in thesheet plane. Corresponding to the yield loci, each of the retained texture gives a peak of R value aboveunity in the neighborhood of 45° from the rolling direction and R values that equal to or less thanunity at 0 and 90°. In contrast with the reatined texture components, a typical recrystallizationtexture, {001}<100> cube component reveals the same yield locus as the von Mises' criterion in theRD-TD coordinates and circle-like one in the 45-l35° coordinates. Cube texture gives the minimumR value of zero at 45° and the maximum one equal to unity at 0 and 90°. Either the reatinedtexture or cube texture causes large plastic anisotropy in the sheet plane and is unfavourable to deepdrawing. However, if the retained texture components and cube texture are appropriately mixed,they can counter the in-plane anisotropy of each other and realize in-plane plastic isotropy, leading tothe improvement of drawability. Both the analytical and experimental results indicate that cubetexture has a beneficial effect on the drawability of sheets, rather than being an unfavorablecomponent.
机译:根据Jonas等人提出的织构多晶(CMTP)各向异性屈服函数的连续力学,分析了织构铝合金薄板中典型优选取向的塑性各向异性。此外,还预测了不同纹理铝合金板的面内塑性各向异性并将其与实验结果进行了比较。 {011} <112>,{123} <634>和{112} <111>的三个成分是保留纹理的主要成分,它们在RD-TD正交坐标中显示出短而厚的产量位点,而在RD-TD正交坐标中显示出细长的位点。旋转45°的坐标形成了图纸平面中的滚动方向。对应于屈服位点,每个保留的织构在距轧制方向45°附近给出高于R的均一值的峰值,并且在0和90°时给出等于或小于均一的R值的峰值。与重新着色的纹理成分相反,典型的重结晶纹理{001} <100>立方体成分在RD-TD坐标中显示与von Mises准则相同的屈服轨迹,在45-135°坐标中显示为圆形。多维数据集纹理在45°时给出的R最小值为零,在0和90°时给出的最大值R等于1。再生纹理或立方体纹理会导致在板材平面中出现较大的塑性各向异性,并且不利于深冲。然而,如果将保留的纹理成分和立方体纹理适当地混合,它们可以抵消彼此的面内各向异性,并实现面内塑性各向同性,从而改善了可拉伸性。分析和实验结果均表明,立方纹理对片材的可拉伸性具有有益的作用,而不是不利的组分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号