首页> 外文期刊>Journal of industrial microbiology & biotechnology >Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets
【24h】

Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets

机译:微生物代谢组学:用无偏见的目标选择和排名来代替反复试验

获取原文
获取原文并翻译 | 示例
       

摘要

Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the gene(s) of interest. To date, the selection of these targets has been based at its best on expert knowledge, but to a large extent also on 'educated guesses' and 'gut feeling'. Therefore, time and thus money is wasted on targets that later prove to be irrelevant or only result in a very minor improvement. Moreover, in current approaches, biological processes that are not known to be involved in the formation of a specific product are overlooked and it is impossible to rank the relative importance of the different targets postulated. Metabolomics, a technology that involves the non-targeted, holistic analysis of the changes in the complete set of metabolites in the cell in response to environmental or cellular changes, in combination with multivariate data analysis (MVDA) tools like principal component discriminant analysis and partial least squares, allow the replacement of current empirical approaches by a scientific approach towards the selection and ranking of targets. In this review, we describe the technological challenges in setting up the novel metabolomics technology and the principle of MVDA algorithms in analyzing biomolecular data sets. In addition to strain improvement, the combined metabolomics and MVDA approach can also be applied to growth medium optimization, predicting the effect of quality differences of different batches of complex media on productivity, the identification of bioactives in complex mixtures, the characterization of mutant strains, the exploration of the production potential of strains, the assignment of functions to orphan genes, the identification of metabolite-dependent regulatory interactions, and many more microbiological issues.
机译:目前,使用随机和靶向方法相结合可改善微生物的生产菌株。在靶向方法的情况下,消除了潜在的瓶颈,反馈抑制和旁路,并且通过过量表达或敲除感兴趣的基因来靶向其他感兴趣的过程。迄今为止,对这些目标的选择最好是基于专家知识,但在很大程度上还取决于“受过教育的猜测”和“胆量”。因此,时间和金钱都浪费在目标上,这些目标后来被证明是无关紧要的,或者只会导致很小的改进。而且,在当前的方法中,忽略了不知道与特定产物的形成有关的生物过程,并且不可能对假设的不同靶标的相对重要性进行排名。代谢组学,一项涉及针对环境或细胞变化对细胞中代谢物完整集合的变化进行非靶向,全面分析的技术,并结合多变量数据分析(MVDA)工具,例如主成分判别分析和部分最小二乘,可以用科学方法代替当前的经验方法来选择和排名目标。在这篇综述中,我们描述了建立新型代谢组学技术的技术挑战以及MVDA算法在分析生物分子数据集方面的原理。除菌株改良外,组合代谢组学和MVDA方法还可用于生长培养基优化,预测不同批次复杂培养基的质量差异对生产率的影响,复杂混合物中生物活性物质的鉴定,突变菌株的表征,探索菌株的生产潜力,将功能分配给孤儿基因,鉴定代谢物相关的调控相互作用以及许多其他微生物问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号