首页> 外文期刊>Journal of Hydrology >Open water evaporation estimation for a small shallow reservoir in winter using surface renewal
【24h】

Open water evaporation estimation for a small shallow reservoir in winter using surface renewal

机译:利用地表更新估算冬季小型浅水库的开放水蒸发量。

获取原文
获取原文并翻译 | 示例
           

摘要

Evaporation is one of the main components of the energy and water balance of reservoir water behind dams and is a major component of water loss. Measurements in winter of sensible heat (H) for the small and shallow reservoir of Midmar Dam, KwaZulu-Natal, South Africa were made using the surface renewal (SR) method, a renewal model method that uses the average cubic air temperature structure function and eddy covariance (EC). The small magnitude of H during winter makes it difficult to test the reliability of the H estimates obtained using instruments and sensors mounted above the water surface using the SR, renewal model and EC methods. Latent energy flux was estimated as a residual of the energy balance using additional measurements of net irradiance Rn above the water surface and the water-stored heat flux. The SR sensible heat flux (HSR) was estimated for heights of 1.0, 1.3, 1.9 and 2.5 m above the water surface using two air temperature time lags r of 0.4 and 0.8 s of the 10-Hz measurements. The SR method depends on a weighting factor a which represents the capability of the atmospheric turbulence to mix the scalar, within the air parcel to be renewed. The factor a was determined for each measurement height and time lag from the slope of a linear regression relationship forced through the origin of measured EC sensible heat flux (HEC) values on the y-axis vs. HSR or renewal model H on the x-axis. All a values obtained using the renewal model method were not statistically different from that obtained using the SR method for z = 1.0 m for both time lags. Using a calibration dataset, an average a value for the 1.0- and 1.3-m heights of 0.198 for r = 0.4 s and 0.245 for r = 0.8 s for the SR and renewal model methods was obtained. The 30-min HSR, renewal model and HEC estimates were often the smallest component of the energy balance (generally 40 to 40Wm2) and compared reasonably well for the validation dataset. The heat storage flux G was larger in magnitude (0–200Wm2) compared to the sensible heat flux. The SR, renewal model and EC latent energy fluxes, each calculated as residuals of the energy balance, were almost the same in magnitude as the available energy flux Rn G due to the relatively small magnitude of the sensible heat flux during the winter measurement period. The daily evaporation ranged between 1.0 and 3.9 mm.
机译:蒸发是大坝后面储水的能量和水平衡的主要组成部分之一,也是失水的主要组成部分。南非夸祖鲁-纳塔尔省米德玛水坝小型浅水库冬季的感热(H)的测量采用表面更新(SR)方法,该更新模型方法使用平均立方空气温度结构函数和涡动协方差(EC)。冬季的H值很小,因此很难使用SR,更新模型和EC方法来测试使用安装在水面以上的仪器和传感器获得的H值的可靠性。潜能通量通过使用水面以上净辐照度Rn和蓄水热通量的附加测量值估算为能量平衡的残差。 SR感热通量(HSR)是使用10 Hz测量的两次空气温度时滞r和0.4 s和0.8 s估算的,其水面高度分别为1.0、1.3、1.9和2.5 m。 SR方法取决于加权因子a,该因子表示大气湍流在要更新的空气包内混合标量的能力。从线性回归关系的斜率确定每个测量高度和时间滞后的因子a,这些线性回归关系是通过y轴上的EC显热通量(HEC)值相对于HSR的更新或模型x上的更新模型H的强迫而得出的轴。对于两个时间滞后,对于z = 1.0 m,使用更新模型方法获得的所有a值与使用SR方法获得的所有a值在统计学上均无差异。使用校准数据集,对于SR和更新模型方法,获得了r = 0.4 s的高度为1.098和1.0-1.3 m的平均值,r = 0.8 s的高度为0.245。 30分钟的HSR,更新模型和HEC估算通常是能量平衡的最小组成部分(通常为40至40Wm2),并且对于验证数据集进行了合理的比较。与显热通量相比,储热通量G的大小更大(0-200Wm2)。 SR,更新模型和EC潜能通量(分别计算为能量平衡的残差)在大小上与可用能量通量Rn G几乎相同,这是因为冬季测量期间的感热通量相对较小。每天的蒸发量在1.0至3.9毫米之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号