...
首页> 外文期刊>Journal of Hydrology >Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment
【24h】

Scale dependent parameterization of soil hydraulic conductivity in 3D simulation of hydrological processes in a forested headwater catchment

机译:森林水源流域水文过程的3D模拟中土壤水力传导率的尺度相关参数化

获取原文
获取原文并翻译 | 示例
           

摘要

In distributed hydrological modelling one often faces the problem that input data need to be aggregated to match the model resolution. However, aggregated data may be too coarse for the parametrization of the processes represented. This dilemma can be circumvented by the adjustment of certain model parameters. For instance, the reduction of local hydraulic gradients due to spatial aggregation can be partially compensated by increasing soil hydraulic conductivity. In this study, we employed the information entropy concept for the scale dependent parameterization of soil hydraulic conductivity. The loss of information content of terrain curvature as consequence of spatial aggregation was used to determine an amplification factor for soil hydraulic conductivity to compensate the resulting retardation of water flow. To test the usefulness of this approach, continuous 3D hydrological simulations were conducted with different spatial resolutions in the highly instrumented Wustebach catchment, Germany. Our results indicated that the introduction of an amplification factor can effectively improve model performances both in terms of soil moisture and runoff simulation. However, comparing simulated soil moisture pattern with observation indicated that uniform application of an amplification factor can lead to local overcorrection of soil hydraulic conductivity. This problem could be circumvented by applying the amplification factor only to model grid cells that suffer from high information loss. To this end, we tested two schemes to define appropriate location-specific correction factors. Both schemes led to improved model performance both in terms of soil water content and runoff simulation. Thus, we anticipate that our proposed scaling approach is useful for the application of next-generation hyper-resolution global land surface models. (C) 2016 Elsevier B.V. All rights reserved.
机译:在分布式水文建模中,经常会遇到一个问题,即需要汇总输入数据以匹配模型分辨率。但是,聚集的数据可能对于所表示的过程的参数化而言过于粗糙。可以通过调整某些模型参数来避免这一难题。例如,由于空间聚集而引起的局部水力梯度的降低可以通过增加土壤水力传导率得到部分补偿。在这项研究中,我们采用信息熵的概念对土壤水力传导率进行比例依赖的参数化。由于空间聚集而导致的地形曲率信息内容的损失被用来确定土壤水力传导率的放大因子,以补偿由此导致的水流延迟。为了测试这种方法的有效性,在德国高度仪器化的Wustebach流域以不同的空间分辨率进行了连续3D水文模拟。我们的结果表明,在土壤水分和径流模拟方面,引入放大因子可以有效改善模型性能。但是,将模拟的土壤水分模式与观测结果进行比较表明,均匀应用放大因子会导致土壤水力传导率的局部过度校正。通过仅将放大因子应用于遭受高信息丢失的模型网格,可以解决此问题。为此,我们测试了两种方案以定义适当的位置特定的校正因子。两种方案都改善了土壤含水量和径流模拟方面的模型性能。因此,我们期望我们提出的缩放方法对于下一代超分辨率全球陆地表面模型的应用很有用。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号