...
首页> 外文期刊>Journal of Hydrology >Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone
【24h】

Snow distribution, melt and surface water inputs to the soil in the mountain rain-snow transition zone

机译:山区雨雪过渡区的积雪,融雪和地表水输入土壤

获取原文
获取原文并翻译 | 示例
           

摘要

The timing, magnitude, and spatial distribution of snow cover and the resulting surface water inputs (SWI) are simulated at a small catchment located in the rain-snow transition zone of southwest Idaho, USA. A physically based snow model is run on this 1.5 ha study catchment, which has an elevation range of 1600-1645 masl. The catchment is divided into relatively steep (mean slope angle of 21 degrees) northeast and southwest facing hill slopes by an ephemeral stream that drains to the southeast. SWI are fundamental controls on soil moisture, streamflow generation, groundwater recharge, and nutrient cycling. Although the timing of melt events is similar across the basin, southwest facing slopes receive smaller magnitude and more frequent SWI from mid winter snow melt, while the northeast facing slope receives greater SWI during the spring. Three spatial patterns are observed in the modeled SWI time series: (1) equal between slopes, (2) majority of SWI on southwest facing slopes, and (3) majority of SWI on northeast facing slopes. Although any of these three spatial patterns can occur during the snow season, four emergent SWI patterns emerge through the melt season: (1) near uniform, (2) controlled by topographic differences in energy fluxes, (3) transitional, and (4) controlled by snow distribution. Rain on snow (ROS) events produce similar SWI between the northeast and southwest facing slopes, with the difference being attributed primarily to snow distribution. Turbulent fluxes dominate the snowpack energetics in four of the five rain on snow events, and advective fluxes from precipitation are greater than 17% during the 2 rain on snow events in December and January. Net radiation fluxes dominate spring melt events. Variations in the method used to distribute precipitation may result in large differences in total precipitation to the basin. (C) 2014 Elsevier B.V. All rights reserved.
机译:在美国爱达荷州西南部雨雪过渡区的一个小流域,模拟了积雪的时间,大小和空间分布以及由此产生的地表水输入(SWI)。在这个1.5公顷的研究流域上运行基于物理的降雪模型,该集水区的海拔范围为1600至1645 masl。流向东南的短暂河流将流域分为相对陡峭的东北坡(平均坡度角为21度)和面向西南的山坡。 SWI是对土壤水分,水流产生,地下水补给和养分循环的基本控制。尽管整个盆地的融化事件发生时间相似,但西南面的斜坡受到较小的影响,并且由于冬季中期融雪而出现的SWI频率更高,而东北面的斜坡在春季受到更大的SWI影响。在模型化的SWI时间序列中观察到三个空间格局:(1)斜坡之间相等,(2)西南坡度上的SWI占多数,以及(3)东北坡度上的SWI占多数。尽管这三种空间模式中的任何一种都可能在下雪季节发生,但在融化季节中会出现四种新兴的SWI模式:(1)接近均匀;(2)受能量通量的地形差异控制;(3)过渡;(4)由降雪控制。雪上降雨(ROS)事件在东北坡和西南坡之间产生相似的SWI,差异主要归因于雪的分布。在五场下雪事件中,湍流占主导地位的积雪能量,在12月和一月的两场下雪事件中,降水产生的平流通量大于17%。净辐射通量支配着春季融化事件。用于分配降水的方法的变化可能导致流域的总降水量相差很大。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号