...
首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults
【24h】

Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults

机译:构造断层粘滑摩擦滑动的孔隙力学和强度恢复

获取原文
获取原文并翻译 | 示例

摘要

Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. However, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5-10MPa. Shear stress was applied via a constant displacement rate, which we varied in velocity step tests from 0.1 to 30 mu m/s. We observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. Our results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.
机译:孔隙流体会影响构造断层的许多方面,包括摩擦强度,地震蠕变和地震周期内的有效应力。然而,孔隙水压力在地震成核和动力破裂中的作用仍然知之甚少。在这里,我们报告了在实验室黏滑事件中孔隙流体压力和孔隙度的变化,作为地震周期的类似物。我们使用排水和不排水的流体条件以及5-10MPa的有效法向应力,在真正的三轴应力下,对由玻璃珠组成的模拟断层泥进行了双直接剪切构造的剪切。剪应力是通过恒定的位移速率施加的,我们在速度阶跃测试中将其从0.1更改为30μm/ s。我们观察到在动态破坏过程中净孔隙压力增加或压实,而在地震期间孔隙压力降低或膨胀,这取决于流体边界条件。在某些情况下,伴随着动态粘滑的发作伴随着短暂的扩张期。我们的数据表明,随时间变化的强化和动态应力下降随有效法向应力而增加,并随流体条件而变化。对于不排水的条件,膨胀和地震滑动与孔隙流体降压直接相关。它们随着有效的法向压力和复发时间而增加。微观结构观察证实了水激活的接触生长和在晶粒交界处的剪切驱动的弹塑性过程的作用。我们的结果表明,作用在晶粒交界处的物理化学过程以及流体压力的变化决定了粘滑应力下降和地震间蠕变速率,因此在地震成核和破裂扩展中起关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号