首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Time-independent compaction behavior of quartz sands
【24h】

Time-independent compaction behavior of quartz sands

机译:石英砂的时间无关压实行为

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanisms such as grain rearrangement, coupled with elastic deformation and grain breakage, are believed to play an important role in the time-independent compaction of sands, controlling porosity and permeability reduction during burial of clastic sediments and during depletion of highly porous reservoir sandstones. We performed uniaxial compaction experiments on sands at room temperature to systematically investigate the effect of loading history, loading rate, grain size, initial porosity, and chemical environment on compaction. Acoustic emission counting and microstructural methods were used to verify the microphysical compaction mechanisms operating. All tests showed quasi-elastic loading behavior accompanied by permanent deformation, involving elastic grain contact distortion, particle rearrangement, and grain failure. Loading history, grain size, and initial porosity significantly affected stress-strain behavior, with increasing grain size and initial porosity promoting compaction. In contrast, chemical environment and loading rate had little effect. The results formed the basis for a microphysicalmodel aimed at explaining the observed compaction behavior. Two extreme cases were modeled: (I) a pack of spherical grains with a distributed flaw size at failure and (II) a pack of nonspherical grains with a constant mean crack size at failure but a distributed effective surface radius of curvature characterizing distributed contact asperity amplitudes. The best agreement with the grain-size- and porosity-dependent trends observed in our experiments was obtained using case (II) of the model. Combining our experimental and modeling results, it was inferred that a grain-size-dependent departure fromsphericity of the grains exerts a key control on the compaction behavior of sands.
机译:人们认为,诸如晶粒重排,弹性变形和晶粒破碎等机制在不依赖时间的砂土压实,控制碎屑沉积物的埋藏以及高孔隙度储层砂岩的枯竭过程中,控制孔隙度和渗透率的降低起着重要作用。我们在室温下对砂子进行了单轴压实实验,系统地研究了加载历史,加载速率,晶粒度,初始孔隙率和化学环境对压实的影响。声发射计数和微结构方法被用来验证微物理压实机制的运作。所有测试均显示准弹性载荷行为伴随永久变形,包括弹性晶粒接触变形,颗粒重排和晶粒破坏。装料历史,晶粒尺寸和初始孔隙率显着影响应力应变行为,而晶粒尺寸和初始孔隙率的增加会促进压实。相反,化学环境和负载率影响很小。结果为旨在解释观察到的压实行为的微物理模型奠定了基础。对两个极端情况进行了建模:(I)一组具有破裂时缺陷尺寸分布的球形晶粒,以及(II)一组具有破裂时平均裂纹尺寸恒定但分布有效表面曲率半径的非球形晶粒,这些特征表征了分布的接触粗糙性振幅。使用模型的案例(II),可以得到与实验中观察到的与晶粒尺寸和孔隙率相关的趋势的最佳一致性。结合我们的实验结果和模型结果,可以推断出与晶粒大小有关的偏离球形度对砂子的压实特性起关键控制作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号