首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Numerical investigation of the interplay between wall geometry and friction in granular fault gouge
【24h】

Numerical investigation of the interplay between wall geometry and friction in granular fault gouge

机译:颗粒断层泥中壁几何与摩擦相互作用的数值研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The influence of surface roughness is central in understanding the behavior of various types of shear zones including faults, landslides, and deformation in glacial till. All of these systems contain a non-planar rough wall, which interacts with either a gouge zone or another wall. We use the 3-D discrete element method (DEM) to investigate both the effect of boundary roughness and friction. Granular non-cohesive gouge is sandwiched between rough walls with large grooves, or smooth walls composed of spherical particles that can be adjusted to control roughness. Roughness and gouge properties are scaled to laboratory friction experiments. We vary friction between the particles and the wall and monitor shear strength, height, coordination number, distribution, and orientation of particle forces, localization, and porosity distribution in the shear zone. We find that, on the first-order, strength is controlled by particle-particle friction and mechanical coupling of the fault zone wall to the gouge. Rough boundaries (RMS roughness > grain radius) force more shear within the gouge zone, dilating the layer and sliding more grains, which leads to large stress necessary to shear the layer. When large amplitude roughness is removed, and roughness is at the grain-scale, the coupling, and thus the strength, is controlled by both wall and particle friction as well as fine-scale boundary roughness. These differences are reflected in profiles of shear within the gouge zone and offset at the boundary in smooth models. From our simulations, we quantify how and why rough natural faults will have a higher overall strength. Key Points Fault strength is controlled by particle friction and coupling Rough faults force shear in the gouge leading to high strength In smooth faults the coupling is controlled by wall and particle friction
机译:在理解各种类型的剪切带的行为(包括断层,滑坡和冰川耕层的变形)时,表面粗糙度的影响至关重要。所有这些系统都包含一个非平面的粗糙壁,该壁与凿孔区域或另一壁相互作用。我们使用3-D离散元方法(DEM)来研究边界粗糙度和摩擦的影响。颗粒状非粘性凿子夹在带有大凹槽的粗糙壁之间,或由可调节以控制粗糙度的球形颗粒组成的光滑壁之间。粗糙度和凿刻性能可根据实验室摩擦实验进行缩放。我们改变颗粒与壁之间的摩擦力,并监测剪切区域中的剪切强度,高度,配位数,分布和颗粒力的方向,局部化和孔隙率分布。我们发现,一阶强度是由颗粒间的摩擦力和断层带与断层壁的机械耦合控制的。粗糙的边界(RMS粗糙度>晶粒半径)会在切屑区域内施加更多的剪切力,从而使层膨胀并使更多的晶粒滑动,从而导致剪切层所需的较大应力。当去除大振幅的粗糙度,并且粗糙度处于晶粒度时,耦合和壁厚均受壁摩擦和粒子摩擦以及精细尺度的边界粗糙度控制。这些差异反映在切屑区域内的剪切剖面中,在光滑模型中的边界处偏移。从我们的模拟中,我们量化了粗糙自然断裂如何以及为何具有更高的整体强度。要点断层强度由颗粒摩擦力和耦合作用控制粗断层中的切力剪切力导致强度高在光滑断层中,耦合作用由壁和颗粒摩擦力控制

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号