首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Experimental constraints on the outgassing dynamics of basaltic magmas
【24h】

Experimental constraints on the outgassing dynamics of basaltic magmas

机译:对玄武岩浆放气动力学的实验约束

获取原文
获取原文并翻译 | 示例
       

摘要

The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies.Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter,6.5 m long bubble column.The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area,10~(-2) 10~2m/s),conduit diameters (10~(0-2) m), and magma viscosities (3-300 Pa s).The model is calibrated with the experimental results to extrapolate key flow parameters such as C_o (distribution parameter) and Fronde number,which control the maximum vesicularity of the magma in the column,and the gas rise speed of gas slugs.It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter,until a threshold value (45 vol.%),which characterizes chum and annular flow regimes.Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 10~3-10~4 m~3/s.The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs.This study also shows that until conditions for separated flow are met,increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles,which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid,favoring magma homogeneity and stable conditions.
机译:结合大型实验和理论研究,探讨了玄武岩在圆柱状管道中分离的两相流动力学。实验包括在直径为0.24 m,长6.5 m的气泡塔中向水或葡萄糖浆中连续注入空气该模型计算一系列气体表观速度(体积流量/管道面积,10〜(-2)10〜2m / s),导管直径(10〜(0-2)m)的水泡和压力梯度。岩浆粘度(3-300 Pa s)。根据实验结果对模型进行校准,以推断出关键的流动参数(例如C_o(分布参数)和Fronde数),这些参数控制着色谱柱中岩浆的最大囊泡度和气体上升预测岩浆水泡性随气体体积流量的增加而增加,并随导管直径的增加而减小,直到阈值(45%(体积))为止,这代表了杂散和环形流动状态。过渡到环形流动状态是预计在最小气体体积流量为10〜3-10〜4 m〜3 / s时发生。垂直压力梯度随气体流量的增加而减小,并受岩浆囊泡(气泡状流动)或这项研究还表明,在满足分流条件之前,岩浆粘度的增加有利于团状流相对于气泡流的稳定性,但暗示了气体团状和小气泡共存,这占总气体外流的一小部分。气流促进了液体的有效对流,有利于岩浆均匀性和稳定的条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号