首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention
【24h】

Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention

机译:海洋中脊以下地震速度低:衰减与熔体滞留

获取原文
获取原文并翻译 | 示例
       

摘要

The first comprehensive seismic experiment sampling subridge mantle revealed a pronounced low-velocity zone between 40 and 100km depth below the East Pacific Rise (EPR) that has been attributed to substantial retained melt fractions of 0.3-2%. Such high melt fractions are at odds with low melt productivity and high melt mobility inferred from petrology and geochemistry. Here, we evaluate whether seismic attenuation can reconcile subridge seismic structure with low melt fractions. We start from a dynamic spreading model which includes melt generation and migration and is converted into seismic structure, accounting for temperature-, pressure-, composition-, phase-, and melt-dependent anharmonicity, and temperature-, pressure-, frequency-and hydration-dependent anelasticity. Our models predict a double low-velocity zone: a shallowapproximately triangularregion due to dry melting, and a low-velocity channel between 60 and 150km depth dominantly controlled by solid state high-temperature seismic attenuation in a damp mantle, with only a minor contribution of (<0.1%) melt. We test how tomographic inversion influences the imaging of our modeled shear velocity features. The EPR experiment revealed a double low-velocity zone, but most tomographic studies would only resolve the deeper velocity minimum. Experimentally constrained anelasticity formulations produce V_S as low as observed and can explain lateral variations in near-ridge asthenospheric V_S with 100K temperature variations and/or zero to high water content. Furthermore, such Q_S formulations also reproduce low asthenospheric V_S below older oceans and continents from basic lithospheric cooling models. Although these structures are compatible with global Q_S images, they are more attenuating than permitted by EPR data.
机译:第一个全面的地震实验采样地幔幔揭示了一个明显的低速带,该带位于东太平洋上升带(EPR)下方40至100公里深度处,这归因于0.3%至2%的相当大的保留熔体分数。如此高的熔体含量与岩石学和地球化学推断的低熔体生产率和高熔体流动性不一致。在这里,我们评估地震衰减是否可以调和具有低熔体含量的地下地震构造。我们从一个动态扩展模型开始,该模型包括熔体的产生和迁移,并转换为地震结构,考虑了温度,压力,成分,相位和与熔体有关的非谐性,以及温度,压力,频率和水化依赖的无弹性。我们的模型预测了一个双重低速带:由于干熔作用而形成的一个浅的近似三角形区域,以及一个深度为60至150km之间的低速通道,该通道主要由湿地幔中的固态高温地震衰减控制,而贡献很小。 (<0.1%)熔化。我们测试了层析成像反演如何影响我们建模的剪切速度特征的成像。 EPR实验揭示了一个双重低速区域,但是大多数层析成像研究只能解决更深的最低速度问题。实验约束的无弹性公式产生的V_S值低至所观察到的值,并且可以解释近脊软流层V_S的横向变化(温度变化为100K和/或含水量为零到高)。此外,这种Q_S公式还根据基本的岩石圈冷却模型在较老的海洋和大洲之下重现了低软流圈的V_S。尽管这些结构与全局Q_S图像兼容,但它们的衰减比EPR数据所允许的衰减更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号