首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Dynamic weakening of gouge layers in high‐speed shear experiments: Assessment of temperature‐dependent friction, thermal pressurization, and flash heating
【24h】

Dynamic weakening of gouge layers in high‐speed shear experiments: Assessment of temperature‐dependent friction, thermal pressurization, and flash heating

机译:高速剪切实验中的切屑层动态弱化:评估与温度有关的摩擦,热压和急速加热

获取原文
获取原文并翻译 | 示例
       

摘要

The rotary shear of gouge demonstrates dramatic weakening at coseismic slip rates, but the inherent variation in shear‐rate with radius of the rotary shear configuration prohibits determining friction constitutive properties from measures of whole‐sample response. Here, representative results of rotary‐shear high‐speed experiments including both constant‐velocity tests (0.1–1.3 m/s) and constant‐acceleration tests (0–1.3 m/s, 0.05, and 0.1 m/s2) are analyzed using a thermal, mechanical and hydrologic finite element method (FEM) model to constrain friction constitutive properties and test hypotheses of dynamic weakening by thermal pressurization and flash heating. The observed frictional behavior of room‐dry gouge can be explained by using a state‐variable friction constitutive relation in which the friction coefficient is inversely proportional to temperature, and by employing a two‐mechanism constitutive formulation in which the friction coefficient increases with temperature (temperature‐strengthening) at low temperatures and decreases with temperature (temperature‐weakening) at higher temperatures. Water‐dampened gouge displays a transient weakening during the early stages of constant‐acceleration tests. FEM analysis indicates the weakening could reflect thermal pressurization of pore water provided both the permeability of the gouge layer and the sealing capacity of the Teflon sleeve, used to contain the gouge during shear, contribute to restricting fluid flow. Microstructural observations indicate that the dynamic weakening coincides with slip localization and temperature increase by frictional heating, which are conditions that favor weakening by flash heating. At steady state, the relationship between slip‐rate and coefficient of friction by the FEM model analysis is consistent with predictions of micromechanical models for weakening by flash heating.
机译:圆凿的旋转剪切在同震滑动速率下表现出明显的减弱,但是剪切速率的固有变化随旋转剪切构型的半径而变,从而无法通过整体样本响应的测量来确定摩擦本构特性。在这里,旋转剪切高速实验的代表性结果包括恒速测试(0.1–1.3 m / s)和恒加速测试(0–1.3 m / s,0.05和0.1 m / s2)的分析使用一个热,机械和水文有限元方法(FEM)模型,以约束摩擦本构特性并测试通过热加压和急速加热引起的动力减弱的假设。可以通过使用状态变量摩擦本构关系(其中摩擦系数与温度成反比)和采用两种机理本构关系(其中摩擦系数随温度增加(低温时温度升高),而在较高温度时温度降低(温度降低)。在恒定加速度测试的早期阶段,加水的凿子显示出短暂的减弱。有限元分析表明,如果凿孔层的渗透性和在剪切过程中用来容纳凿孔的特氟龙套管的密封能力都有助于限制流体流动,则这种减弱作用可以反映孔隙水的热压。微观结构观察表明,动力减弱与滑动局部化和摩擦加热引起的温度升高相吻合,这是有利于通过闪蒸加热进行减弱的条件。在稳态下,FEM模型分析的滑移率与摩擦系数之间的关系与通过闪蒸加热而减弱的微力学模型的预测一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号