首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal
【24h】

Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal

机译:玄武破火山口:塌陷动力学,建筑物变形和岩浆撤离变化

获取原文
获取原文并翻译 | 示例
           

摘要

The incremental caldera collapses of Fernandina (1968), Miyakejima (2000), and Piton de la Fournaise (2007) are analyzed in order to understand the collapse dynamics in basaltic setting and the associated edifice deformation. For each caldera, the collapse dynamics is assessed through the evolution of the (1) time interval T between two successive collapse increments, (2) amount of vertical displacement during each collapse increment, and (3) magma outflow rate during the whole collapse caldera process. We show from the evolution of T that Piton de la Fournaise and Fernandina were characterized by a similar collapse dynamics, despite large differences in the caldera geometry and the duration of the whole collapse caldera process. This evolution significantly differs from that of Miyakejima where T strongly fluctuated throughout the whole collapse process. Quantification of the piston vertical displacements enables us to determine the magma outflow rates between each collapse increment. Displacement data (tiltmeter and/or GPS) for Piton de la Fournaise and Miyakejima are used to constrain the edifice overall deformation and the edifice deformation rates. These data reveal that both volcanoes experienced edifice inflation once the piston collapsed into the magma chamber. Such a deformation, which lasts during the first collapse increments only, is interpreted as the result of larger volume of piston intruded in the magma chamber than magma withdrawn before each collapse increment. Once the effect of the collapsing rock column vanishes, edifice deflates. We also determine for each caldera the critical amount of magma evacuated before collapse initiation and compare it to analog models. The significant differences between models and nature are explained by the occurrence of preexisting weak zones in nature, i.e., the ring faults, that are not taken into account in analog models. Finally, we show that Tat Piton de la Fournaise and Fernandina was equally controlled by the frictional resistance along the ring faults and the magma outflow rate. In addition to these two parameters, the collapse dynamics of Miyakejima was also influenced by variations of the magma bulk modulus, which changed after the influx of deep gas-rich magma into the collapse-related magma chamber. Altogether, our results show that the dynamics of caldera collapse in basaltic volcanoes proceeds in two phases: Phase 1, starting with the first collapse, is characterized by the largest collapse amplitude, an incremental edifice inflation, and a step-by-step increase of the rate of magma outflow. Phase 2 shows a rapid decrease of the magma discharge rate to a low level concomitant with the continuous edifice deflation. If deep magma is injected into the magma chamber, as at Miyakejima, an additional phase occurs (phase 3).
机译:为了了解玄武岩环境下的坍塌动态以及相关的建筑物变形,对Fernandina(1968),Miyakejima(2000)和Piton de la Fournaise(2007)的破火山口塌陷进行了分析。对于每个破火山口,通过以下过程评估塌陷动力学:(1)两个连续塌陷增量之间的时间间隔T,(2)每个塌陷增量期间的垂直位移量以及(3)整个塌陷火山口期间的岩浆流出率处理。从T的演变我们可以看出,尽管火山口的几何形状和整个坍塌火山口过程的持续时间存在很大差异,但Piton de la Fournaise和Fernandina的塌陷动力学特征相似。这种演化与三宅岛的演化显着不同,在整个崩塌过程中,T剧烈波动。活塞垂直位移的量化使我们能够确定每个塌陷增量之间的岩浆流出速率。 Piton de la Fournaise和Miyakejima的位移数据(倾斜仪和/或GPS)用于约束建筑物的总体变形和建筑物的变形率。这些数据表明,一旦活塞坍塌进入岩浆室,两个火山都经历了建筑物的膨胀。这种变形仅在第一个塌陷增量期间才持续存在,这被解释为,与每个塌陷增量之前抽出的岩浆相比,进入岩浆室内的活塞容积更大。坍塌的岩石柱的作用消失后,建筑物便开始放空。我们还确定了每个破火山口坍塌开始前撤离的临界岩浆量,并将其与模拟模型进行比较。模型与自然之间的显着差异可以通过自然界中预先存在的薄弱区域(即环形断层)的出现来解释,而在模拟模型中则没有考虑到。最后,我们表明,Tat Piton de la Fournaise和Fernandina受环断层的摩擦阻力和岩浆流出速率同样控制。除了这两个参数外,三宅岛的坍塌动力学还受到岩浆体积模量变化的影响,岩浆体积模量的变化在深层富气岩浆涌入与塌陷有关的岩浆室之后发生变化。总的来说,我们的结果表明,玄武岩火山口的火山口塌陷的动力学过程分为两个阶段:第一阶段从第一次塌陷开始,其特征是最大的塌陷幅度,递增的建筑物膨胀和逐步增加岩浆流出的速度。第2阶段显示出岩浆排出速率迅速下降到低水平,同时伴随着连续的建筑物放气。如果将深层岩浆注入岩浆室内,如三宅岛一样,则会出现一个附加阶段(阶段3)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号