首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Kinetic effects of microscale plasticity at grain boundaries during pressure solution
【24h】

Kinetic effects of microscale plasticity at grain boundaries during pressure solution

机译:固溶过程中晶界微观可塑性的动力学效应

获取原文
获取原文并翻译 | 示例
       

摘要

It is generally assumed in kinetic models for pressure solution in materials such as quartz that the effective dissolution rate coefficient in grain boundaries is equal to the conventional geochemical dissolution rate coefficient on a free surface. However, predictions based on this assumption usually overestimate both natural and experimental pressure solution rates even when evidence for dissolution rate control is strong. A possible explanation for this discrepancy is that grain boundary structure and dissipative processes such as microscale plasticity in the grain boundary can decrease this effective rate coefficient. On the basis of a simple grain boundary model assuming an island-channel structure, we have derived a preliminary model for the effect that dissipation by plastic deformation (work-hardening flow and creep) of grain boundary islands has on dissolution-controlled pressure solution rates. Comparing the predictions of this model with the experimental data on quartz pressure solution rates, we see that microscale plasticity at grain boundary islands does slow down pressure solution and can help explain the discrepancies between observed and theoretical pressure solution rates. When applied to pressure solution creep of sandstones or fault rocks in nature, our model predicts that grain boundary plastic deformation in quartz might have a significant effect at depths beyond —9-10 km.
机译:通常,在诸如石英之类的材料中的压力溶液动力学模型中,晶界中的有效溶解速率系数等于自由表面上常规的地球化学溶解速率系数。但是,基于此假设的预测通常会高估自然和实验压力的溶解速度,即使有很强的溶出速度控制证据也是如此。对于这种差异的可能解释是,晶界结构和耗散过程(例如晶界中的微观可塑性)会降低该有效速率系数。在假定岛状通道结构的简单晶界模型的基础上,我们推导了一个初步模型,该模型涉及晶界岛的塑性变形(加工硬化流和蠕变)引起的耗散对溶出控制的压力求解速率的影响。 。将该模型的预测结果与石英压力解速率的实验数据进行比较,我们发现晶界岛处的微尺度可塑性确实降低了压力解的速度,并且可以帮助解释观测到的理论压力解速率与理论压力解速率之间的差异。当应用于自然界中的砂岩或断层岩的压力解蠕变时,我们的模型预测,石英的晶界塑性变形可能会在超过9-10 km的深度产生重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号