首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >A three-dimensional numerical simulation of spreading umbrella clouds
【24h】

A three-dimensional numerical simulation of spreading umbrella clouds

机译:伞状云扩散的三维数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

During explosive volcanic eruptions, an eruption column buoyantly rises as a turbulent plume, and an umbrella cloud spreads laterally as a gravity current at the neutral buoyancy level. The source conditions of explosive eruptions such as mass discharge rates of magma at vents have been estimated from the field observations (e.g., satellite images) on the height of the eruption columns and the spreading rate of umbrella clouds on the basis of the one-dimensional (1-D) plume model and the gravity current model. However, these simplified models contain empirical constants (entrainment coefficient of turbulent plume, k, and Froude number of gravity current, A) that should be justified. We developed a time-dependent three-dimensional (3-D) numerical model of eruption clouds to independently determine the values of these constants. The 3-D model is designed to calculate quantitative features of turbulent mixing between an eruption cloud and the ambient air without any a priori empirical constants by applying a sufficiently fine grid size with a third-order accuracy scheme. It has reproduced the fundamental features of eruption clouds including eruption columns, pyroclastic flows, coignimbrite ash clouds, and umbrella clouds. The altitudes of the spreading umbrella clouds in the 3-D simulations are consistent with those of the neutral buoyancy level of eruption columns estimated by the 1-D plume model with the entrainment coefficient k — 0.1. The relationship between the volumetric flow rate and the spreading rate of the umbrella cloud in the 3-D simulations is explained by the axisymmetrical gravity current model with A 0.2 for eruption clouds in the tropical atmosphere and A 0.1 for those in the midlatitude atmosphere. On the other hand, the total column height in the 3-D simulations strongly oscillates even for a constant mass discharge rate, and its time average tends to be substantially greater than the column height estimated by the 1-D plume model with k '- 0.1, particularly for large-scale eruption clouds in the midlatitude atmosphere. We recommend a method to estimate the mass discharge rate from the observation of the column height or the spreading rate of umbrella cloud. The method and the accuracy Of the 3-D simulations are tested on the basis of the field data (e.g., the total height of the eruption column, the altitude and the spreading rate of the umbrella cloud, and the mass discharge rate) of the Pinatubo 1991 eruption.
机译:在爆炸性火山喷发期间,喷发柱以湍急的羽状流的形式浮起,而伞状云则以重力流在中性浮力处横向扩散。爆炸喷发的源条件,例如喷口处的岩浆质量排放率,是根据一维的喷发柱高度和伞状云的扩散率的野外观测(例如卫星图像)估算的(1-D)羽状模型和重力流模型。但是,这些简化的模型包含经验常数(湍流的夹带系数k和重力流的Froude数A),这是合理的。我们开发了喷发云的时间相关的三维(3-D)数值模型,以独立确定这些常数的值。 3-D模型旨在通过应用具有三阶精度方案的足够细的网格大小来计算喷发云与周围空气之间的湍流混合的定量特征,而无需任何先验经验常数。它再现了喷发云的基本特征,包括喷发柱,火山碎屑流,共沸灰云和伞状云。在3-D模拟中散布的伞状云的高度与由1-D羽状模型估计的夹带系数k-0.1的喷发柱的中性浮力高度一致。在3-D模拟中,伞状云的体积流量与扩散率之间的关系由轴对称重力流模型解释,其中热带大气的喷发云为A 0.2,中纬度大气的为0.1。另一方面,即使在恒定的质量排放速率下,3-D模拟中的总柱高也会剧烈振荡,并且其时间平均值往往会大大大于k'-的1-D羽状模型估计的柱高。 0.1,特别是对于中纬度大气中的大规模喷发云。我们建议使用一种方法,通过观察柱高或伞状云的扩散速率来估计质量排放速率。根据现场数据(例如,喷发柱的总高度,伞云的高度和扩散率以及质量排放率)对3-D模拟的方法和精度进行测试。皮纳图博1991年爆发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号