首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Staggered-grid split-node method for spontaneous rupture simulation
【24h】

Staggered-grid split-node method for spontaneous rupture simulation

机译:交错网格分裂节点法用于自发破裂模拟

获取原文
获取原文并翻译 | 示例
       

摘要

We adapt the traction-at-split-node method for spontaneous rupture simulations to the velocity-stress staggered-grid finite difference scheme. The staggered-grid implementation introduces both velocity and stress discontinuities via split nodes. The staggered traction components on the fault plane are interpolated to form the traction vector at split nodes, facilitating alignment of the vectors of sliding friction and slip velocity. To simplify the split-node partitioning of the equations of motion, spatial differencing is reduced from fourth to second order along the fault plane, but in the remainder of the grid the spatial differencing scheme remains identical to conventional spatially fourth-order three-dimensional staggered-grid schemes. The resulting staggered-grid split node (SGSN) method has convergence rates relative to rupture-time, final-slip, and peak-slip-velocity metrics that are very similar to the corresponding rates for both a partly staggered split-node code (DFM) and the boundary integral method. The SGSN method gives very accurate solutions (in the sense that errors are comparable to the uncertainties in the reference solution) when the median resolution of the cohesive zone is 4.4 grid points. Combined with previous results for other grid types and other fault-discontinuity approximations, the SGSN results demonstrate that accuracy in finite difference solutions to the spontaneous rupture problem is controlled principally by the scheme used to represent the fault discontinuity, and is relatively insensitive to the grid geometry used to represent the continuum. The method provides an efficient and accurate means of adding spontaneous rupture capability to velocity-stress staggered-grid finite difference codes, while retaining the computational advantages of those codes for problems of wave propagation in complex media.
机译:我们将用于自然破裂模拟的裂口牵引方法适应速度应力交错网格有限差分方案。交错网格实现通过分割节点同时引入了速度和应力不连续性。在断层平面上对交错的牵引分量进行插值以形成牵引矢量,从而有利于滑动摩擦和滑动速度矢量的对齐。为了简化运动方程的分割节点划分,沿断层平面将空间差分从四阶减小到第二阶,但是在网格的其余部分中,空间差分方案与常规的空间四阶三维交错保持相同-网格方案。最终的交错网格分裂节点(SGSN)方法具有相对于破裂时间,最终滑动和峰滑速度度量的收敛速率,这与部分交错分裂节点代码(DFM)的相应速率非常相似)和边界积分法。当内聚区的中值分辨率为4.4格点时,SGSN方法可提供非常准确的解决方案(在某种意义上,误差可与参考解决方案中的不确定性相比)。结合其他网格类型的先前结果和其他故障不连续性近似值,SGSN结果表明,自发破裂问题的有限差分解决方案的精度主要由表示故障不连续性的方案控制,并且对网格相对不敏感用于表示连续体的几何。该方法提供了一种有效且准确的手段,可以在速度应力交错网格有限差分码中增加自发断裂能力,同时保留那些码在复杂介质中波传播问题的计算优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号