首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand
【24h】

Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand

机译:区分新西兰鲁阿佩胡火山的应力诱发各向异性和结构各向异性

获取原文
获取原文并翻译 | 示例
       

摘要

We have created a benchmark of spatial variations in shear wave anisotropy around Mount Ruapehu, New Zealand, against which to measure future temporal changes. Anisotropy in the crust is often assumed to be caused by stress-aligned microcracks, and the polarization of the fast quasi-shear wave (φ) is thus interpreted to indicate the direction of maximum horizontal stress, but can also be due to aligned minerals or macroscopic fractures. Changes in seismic anisotropy have been observed following a major eruption in 1995/96 and were attributed to changes in stress from the depressurization of the magmatic system. Three-component broadband seismometers have been deployed to complement the permanent stations that surround Ruapehu, creating a combined network of 34 threecomponent seismometers. This denser observational network improves the resolution with which spatial variations in seismic anisotropy can be examined. Using an automated shear wave splitting analysis, we examine local earthquakes in 2008. We observe a strong azimuthal dependence of φ and so introduce a spatial averaging technique and twodimensional tomography of recorded delay times. The anisotropy can be divided into regions in which φ agrees with stress estimations from focal mechanism inversions,suggesting stress-induced anisotropy, and those in which φ is aligned with structural features such as faults, suggesting structural anisotropy. The pattern of anisotropy that is inferred to be stress related cannot be modeled adequately using Coulomb modeling with a dike-like inflation source. We suggest that the stress-induced anisotropy is affected by loading of the volcano and a lithospheric discontinuity.
机译:我们已经建立了新西兰鲁阿佩胡山周围剪切波各向异性的空间变化基准,用以测量未来的时间变化。通常认为地壳中的各向异性是由应力对准的微裂纹引起的,因此,快速准剪切波(φ)的极化被解释为指示最大水平应力的方向,但也可能是由于矿物的取向或宏观骨折。在1995/96年的一次大喷发之后,观测到了地震各向异性的变化,这归因于岩浆系统减压引起的应力变化。已经部署了三分量宽带地震仪来补充Ruapehu周围的永久站,从而创建了由34个三分量地震仪组成的组合网络。这种更密集的观测网络提高了分辨率,可以用来检查地震各向异性的空间变化。使用自动剪切波分裂分析,我们研究了2008年的当地地震。我们观察到φ与方位角的相关性很强,因此引入了空间平均技术和记录的延迟时间的二维层析成像。各向异性可分为Φ与根据震源机制反演的应力估算相符,建议应力诱发各向异性的区域,以及Φ与诸如断层等结构特征对齐的区域,表明结构各向异性。推论出与应力有关的各向异性模式无法使用带有堤坝状膨胀源的库仑模型进行充分建模。我们建议,应力引起的各向异性受火山负荷和岩石圈间断的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号