首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data
【24h】

Constraints on thermal state and composition of the Earth's lower mantle from electromagnetic impedances and seismic data

机译:通过电磁阻抗和地震数据限制地球下地幔的热状态和组成

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the tight constraints put by seismology on the elastic properties of the Earth's lower mantle, its mineralogical composition and thermal state remain poorly known because the interpretation of seismic measurements suffers from the trade-off between temperature, iron content, and mineralogical composition. In order to overcome this difficulty, we complement seismic data with electromagnetic induction data. The latter data are mostly sensitive to temperature and iron content, while densities and acoustic speeds mostly constrain the mineralogy. A 0.5 log unit increase in electrical conductivity can be caused either by a 400 K increase of the temperature or by an increase of iron content from 10% to 12.5%. Acoustic velocity is only marginally sensitive to temperature but it increases by 0.8 km s~(-1) on average as the perovskite fraction increases from 50% to 100%. Olsen's (1999) apparent resistivities in the period range [15 days, 11 years], and Preliminary reference Earth model (PREM) densities and acoustic speeds are jointly inverted in the depth range [800 km, 2600 km] by using a Monte Carlo Markov Chain method. Given the uncertainties on these data, estimates of perovskite fraction are well constrained over the whole depth range, but information on temperature and iron content is only obtained for depths less than 2000 km, corresponding to the penetration depth of the long-period electromagnetic field. All parameter values are determined with an uncertainty better than 15-20% at the 1a confidence level. The temperature in the uppermost lower mantle (i.e., down to 1300 km depth) is close to a value of 2200 K and increases along a superadiabatic gradient of 0.4 K km-1 between 1300 and 2000 km depth. Extrapolation of this gradient at greater depth leads to a temperature close to 2800 K at 2600 km depth. The iron content of the lower mantle is found to be almost constant and equal to 10-11% whatever the depth, while a significant linear decrease of the perovskite content is observed throughout the whole depth range, from 80% at 800 km depth down to —65% at 2600 km depth.
机译:尽管地震学对地球下地幔的弹性特性施加了严格的限制,但其矿物学组成和热态仍然鲜为人知,因为地震测量的解释受温度,铁含量和矿物学组成之间的权衡取舍。为了克服这个困难,我们用电磁感应数据补充了地震数据。后者的数据主要对温度和铁含量敏感,而密度和声速主要限制矿物学。温度增加400 K或铁含量从10%增加到12.5%可能导致电导率增加0.5 log单位。声速仅对温度略微敏感,但随着钙钛矿分数从50%增加到100%,声速平均提高0.8 km s〜(-1)。奥尔森(1999)的视电阻率在周期范围[15天11年]中,并且使用蒙特卡洛马尔可夫模型在深度范围[800 km,2600 km]中将初始参考地球模型(PREM)密度和声速共同反转了连锁法。考虑到这些数据的不确定性,钙钛矿分数的估计值在整个深度范围内都受到很好的约束,但是只有在小于2000 km的深度(对应于长周期电磁场的穿透深度)下才能获得有关温度和铁含量的信息。在1a置信度下确定的所有参数值的不确定性都好于15-20%。最下层地幔的温度(即低至1300 km深度)接近2200 K的值,并在1300至2000 km深度之间沿0.4 K km-1的超绝热梯度升高。在更大深度处外推此梯度会导致在2600 km深度处温度接近2800K。无论深度如何,下地幔的铁含量几乎保持恒定,等于10-11%,而在整个深度范围(从800 km深度的80%下降到200%),钙钛矿含量均呈线性下降。 —在2600公里深度处为65%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号