首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >A theoretical model for fragmentation of viscous bubbly magmas in shock tubes
【24h】

A theoretical model for fragmentation of viscous bubbly magmas in shock tubes

机译:冲击管中粘性气泡岩浆破碎的理论模型

获取原文
获取原文并翻译 | 示例
       

摘要

A coupled model for one-dimensional time-dependent compressible flow and bubble expansion is developed to investigate fragmentation mechanisms of viscous bubbly magmas in shock tubes. Initially a bubbly magma at a high pressure is separated from air at the atmospheric pressure by a diaphragm. As the diaphragm is ruptured, a shock wave propagates into the air, and a rarefaction wave propagates into the bubbly magma. As a result, the bubbly magma is decompressed and expands. Gas overpressure and hoop stress around expanding bubbles are calculated by applying the cell model. It is assumed that the magma fragments and the flow changes from bubbly flow to gas-pyroclast dispersion when the hoop stress or the gas volume fraction reaches a given threshold. Two types of fragmentation mechanisms are recognized: (1) high-viscosity magma fragments as the hoop stress reaches the tensile strength of the melt (stress fragmentation) and (2) the hoop stress does not grow in low-viscosity magma so that fragmentation occurs after bubble expansion when the gas volume fraction reaches a threshold (expansion fragmentation). During stress fragmentation a zone of steep pressure gradient forms just behind the fragmentation surface, which propagates into the magma together with the fragmentation surface. Analytical considerations suggest that the self-sustained stress fragmentation process can be described by a combination of a traveling-wave-type solution in the bubbly flow region and a self-similar solution in the gas-pyroclast flow region. Some simple formulae to predict the fragmentation speed (downward propagation velocity of the fragmentation surface) are derived on the basis of these solutions. The formulae are applied to recent experimental results using shock tube techniques as well as Vulcanian explosions in nature.
机译:建立了一维时间相关的可压缩流和气泡膨胀的耦合模型,以研究冲击管中粘性气泡岩浆的破碎机理。最初,高压大气泡岩浆通过隔膜与大气压下的空气隔开。当隔膜破裂时,冲击波传播到空气中,稀疏波传播到气泡状岩浆中。结果,气泡状的岩浆被减压并膨胀。通过应用单元模型可以计算出气泡周围的气体超压和环向应力。假定当环向应力或气体体积分数达到给定阈值时,岩浆碎屑和流动从泡状流变为气-发烧质分散。认识到两种碎裂机制:(1)当环向应力达到熔体的拉伸强度时,高粘度岩浆碎裂(应力破碎);(2)在低粘度岩浆中环向应力不增长,从而发生碎裂气泡膨胀后,当气体体积分数达到阈值(膨胀碎裂)时。在应力破碎过程中,正好在破碎表面的后面形成一个陡峭的压力梯度区,该区域与破碎表面一起传播到岩浆中。分析上的考虑表明,可以通过气泡流区域中的行波型溶液和气-吡咯烷酮流区域中的自相似溶液的组合来描述自持应力破碎过程。在这些解决方案的基础上,得出一些简单的公式来预测碎裂速度(碎裂表面的向下传播速度)。该公式适用于使用冲击管技术以及自然界中的Vulcanian爆炸的最新实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号