首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Controls on plume heat flux and plume excess temperature
【24h】

Controls on plume heat flux and plume excess temperature

机译:控制羽流热通量和羽流过高温度

获取原文
获取原文并翻译 | 示例
       

摘要

Plume heat flux and plume excess temperature in the upper mantle inferred from surface observations may pose important constraints on the heat flux from the core and mantle internal heating rate. This study examined the relationship between plume heat flux Q p , core-mantle boundary (CMB) heat flux Q cmb and plume excess temperature ΔT plume in thermal convection using both numerical modeling and theoretical analysis. 3-D regional spherical models of mantle convection were computed with high resolution and for different Rayleigh number, internal heat generation rate, viscosity structures and dissipation number. An analytic model was developed for variations in Q p and ΔT plume with depth. The results can be summarized as following. (1) Mantle plumes immediately above the CMB carry nearly 80%–90% of the CMB heat flux. (2) Q p and ΔT plume decrease by approximately a factor of two for plumes to ascend from near the CMB to the upper mantle depth. (3) Our analytic model indicates that the decrease in Q p and ΔT plume is mainly controlled by the steeper adiabatic gradient of plumes compared with the ambient mantle and the reduction ratios for Q p and ΔT plume due to this effect depend upon the dissipation number and the distance over which plumes ascend. (4) The subadiabatic temperature also contributes to the reduction of Q p and ΔT plume , but its contribution is only 20% to 30%. Subadiabatic temperature from our models with >50% internal heating rate ranges from 35 K to 170 K for CMB temperature of 3400°C. (5) Our results confirms that ~70% internal heating rate for the mantle or Q cmb of ~11 TW is required to reproduce the plume-related observations.
机译:根据地表观测推断,上地幔中的羽状热通量和羽状过高温度可能会对岩心的热通量和地幔内部加热速率造成重要的限制。这项研究使用数值模型和理论分析研究了热对流中羽流热通量Q p,芯-幔边界(CMB)热通量Q cmb和羽流过温ΔT羽流之间的关系。高分辨率计算了地幔对流的3-D区域球形模型,并针对不同的瑞利数,内部发热量,黏度结构和耗散数进行了计算。针对Q p和ΔT羽流随深度的变化建立了解析模型。结果可以总结如下。 (1)位于CMB上方的地幔柱承载着CMB热通量的近80%–90%。 (2)对于从CMB附近上升到上地幔深度的羽流,Q p和ΔT羽流减少约两倍。 (3)我们的分析模型表明,Q p和ΔT羽流的减少主要是由与周围地幔相比更陡的绝热梯度来控制的,并且由于这种影响导致的Q p和ΔT羽流的减少率取决于耗散数羽状上升的距离。 (4)绝热温度也有助于降低Q p和ΔT羽流,但其贡献仅为20%至30%。对于3400°C的CMB温度,我们的模型的内部温度> 50%的亚绝热温度范围为35 K至170K。 (5)我们的结果证实,要再现与羽流有关的观测结果,地幔或Q cmb的内部加热率应达到70%〜11 TW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号