首页> 外文期刊>Journal of geophysical research. Planets >Laboratory impact experiments and numerical simulations on shock pressure attenuation in water ice
【24h】

Laboratory impact experiments and numerical simulations on shock pressure attenuation in water ice

机译:水冰激波压力衰减的实验室冲击实验和数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

High-velocity impact experiments of water ice were conducted to measure the shock pressure profile at various distances from the impact point. A numerical simulation of shock wave propagation in water ice was also conducted for comparison with the experimental results. The numerical model was improved to fit the measured profiles, and it was found that a tensile strength of Y c = 1 MPa was necessary to reproduce the shock pressure profiles above the Hugoniot Elastic Limit. This improved numerical model was then used to study the shock pressure attenuation in water ice at various impact conditions and to refine the crater scaling law. The late-stage effective energy (LE) is the product of initial shock pressure (P 0) and the third power of the projectile size (L p 3). The impact conditions with the same late-stage effective energy can produce the same shock pressure distribution far from the impact point (so-called late-stage equivalence). These impact conditions were investigated by numerical calculations with different projectiles and impact velocities. As a result of our calculation for water ice impacts, we found that a power law index of 2.2 instead of 3, as adopted by previous studies, is suitable for reproducing the late-stage equivalence in water ice (i.e., LE is proportional to P 0 · L p 2.2). By using this improved LE, we can reconcile the inconsistency between the crater size and the LE indicated by previous studies. By using this improved LE, the crater volume V cr formed on water ice is expressed by the following equation, V cr = 1.0 exp (l n/2450), with V cr in cm3, wherein l n (in Pa m2.2) is a constant derived from a fit to the data.
机译:进行了水冰高速冲击实验,以测量距冲击点不同距离的冲击压力曲线。还进行了在水冰中冲击波传播的数值模拟,以与实验结果进行比较。改进了数值模型以适合测量的轮廓,并且发现要重现超过Hugoniot弹性极限的冲击压力轮廓,必须使Y c = 1 MPa的拉伸强度。然后,使用该改进的数值模型研究在各种冲击条件下水冰中的冲击压力衰减,并细化了火山口结垢定律。后期有效能量(LE)是初始冲击压力(P 0)与弹丸尺寸的三次方(L p 3)的乘积。具有相同后期有效能量的冲击条件可以在远离冲击点的地方产生相同的冲击压力分布(所谓的后期等效)。通过不同弹丸和撞击速度的数值计算研究了这些撞击条件。根据对水冰影响的计算结果,我们发现幂定律指数为2.2(而不是先前研究采用的3)适合于再现水冰的后期等效性(即LE与P成正比) 0·L p 2.2)。通过使用这种改进的LE,我们可以调和火山口大小和先前研究表明的LE之间的不一致。通过使用这种改进的LE,在水冰上形成的火山口体积V cr用以下公式表示:V cr = 1.0 exp(ln / 2450),V cr以cm3为单位,其中ln(以Pa m2.2表示)为由数据拟合得出的常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号