...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide - art. no. D03305
【24h】

Contribution of mass-dependent fractionation to the oxygen isotope anomaly of atmospheric nitrous oxide - art. no. D03305

机译:质量依赖的分馏对大气一氧化二氮的氧同位素异常的贡献-艺术。没有。 D03305

获取原文
获取原文并翻译 | 示例
           

摘要

1] Similar to other oxygen-bearing atmospheric compounds, lower-stratospheric and tropospheric nitrous oxide (N2O) show an oxygen isotope anomaly. This anomaly can be explained by in situ atmospheric chemical sources that transfer the well-known oxygen isotope anomaly of ozone to N2O. The isotope anomaly of ozone, in turn, is caused by non-mass-dependent fractionation during its formation. Nevertheless, recent work claimed that photodissociation of stratospheric N2O could account for up to half of the observed anomaly in N2O without having to invoke chemical N2O sources. It is shown that this prediction is due to the choice of inadequate parameters in the specific underlying physicochemical model of isotopic fractionation in N2O photolysis. Budget calculations based on experimentally measured fractionation factors at stratospherically relevant wavelengths show only negligible contributions of N2O photolysis to the observed oxygen isotope anomaly. However, biological sources at the Earth's surface, which are usually considered to produce mass-dependently fractionated N2O, may actually be responsible for part of the observed anomaly. This is as a consequence of slight variations in the mass-dependent relationships between O-17 and O-18 isotope effects and the relationship assumed in the definition of the oxygen isotope anomaly. Up to 44% of the observed anomaly might be explained by this "numerical source'' that was not recognized previously. As a prerequisite to understand this possibly surprising result, the existing definitions of isotope anomalies and their practical consequences are analyzed. An accurate terminology will also benefit future generations of researchers in the rapidly growing fields of atmospheric isotope chemistry and physics. [References: 53
机译:1]与其他含氧大气化合物相似,低平流层和对流层一氧化二氮(N2O)表现出氧同位素异常。这种异常现象可以用原位大气化学源来解释,该化学源将众所周知的臭氧的氧同位素异常转移到N2O中。反过来,臭氧的同位素异常是由其形成过程中与质量无关的分馏引起的。尽管如此,最近的工作声称平流层N2O的光解离可以解决N2O中观测到的异常现象的一半,而不必调用化学N2O来源。结果表明,这种预测是由于在N2O光解过程中同位素分馏的特定基础物理化学模型中参数选择不充分所致。基于平流层相关波长下实验测得的分馏因子的预算计算表明,N2O光解对观测到的氧同位素异常的贡献可忽略不计。但是,通常认为在地球表面产生质量依赖性地分馏出的N2O的生物源实际上可能是所观测到的异常的一部分。这是由于O-17和O-18同位素效应之间的质量相关关系以及氧同位素异常定义中假定的关系存在细微变化的结果。高达44%的观测到的异常可能是由以前未认识到的“数字来源”解释的,作为理解这一可能令人惊讶的结果的前提,分析了同位素异常的现有定义及其实际后果。在迅速发展的大气同位素化学和物理学领域中的子孙后代也将受益[参考文献:53

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号