...
首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Hydrodynamic response to strike- and dip-slip faulting in a half-space
【24h】

Hydrodynamic response to strike- and dip-slip faulting in a half-space

机译:对半空间走滑和倾滑断层的流体动力响应

获取原文
获取原文并翻译 | 示例

摘要

Field observations have shown strong coupling between earthquake-induced stress-strain fields and subsurface hydrodynamics, reflected by water level change in wells and stream flow fluctuations. Various models have been used in an attempt to interpret the coseismic fluctuations in groundwater level, predict water table rise in the event of an earthquake, and explain stream flow variations. However; a general model integrating earthquake-induced stress-strain fields, coseismic pore pressure generation, and postseismic pore pressure diffusion is still lacking. This paper presents such a general framework with which one can approach the general problem of postseismic pore pressure diffusion in three dimensions. We first use an earthquake strain model to generate the stress-strain field. We then discuss the linkage coupling stress and strain with pore pressure and present an analytic solution of time-dependent pore pressure diffusion. Finally, we use two examples, a strike-slip and a dip-slip fault, to demonstrate the application of the analytical model and the effects of earthquakes on fluid now. The application to the two fault systems shows that the diffusion time is shorter than conventional estimates, which are based on a diffusivity and a length scale. We find that the diffusion time is predominately a function of the diffusivity of the system, while the length scale influences the magnitude of the initial pore pressure. A diffusion time based on the diffusivity and a length may be misleading because significant localized flow occurs in complex three-dimensional systems. Furthermore, the induced patterns of a pore pressure change resemble the strain field when shear stress effects are neglected but are significantly modified when shear stresses are included in the coupling relation. The theoretical basis of this work is developed assuming a single episode dislocation. However, the methodology and the results can be readily applied to studying pore pressure conditions after multifaulting events by simple superposition. [References: 44]
机译:现场观测表明,地震引起的应力应变场与地下流体动力学之间存在很强的耦合性,这反映在井中水位的变化和水流的波动上。人们尝试使用各种模型来解释地下水位的同震波动,预测地震发生时地下水位的升高以及解释水流的变化。然而;仍然缺乏一个综合模型,该模型综合了地震诱发的应力应变场,同震孔隙压力的产生和震后孔隙压力的扩散。本文提出了这样一个总体框架,通过它人们可以在三个维度上解决地震后孔隙压力扩散的普遍问题。我们首先使用地震应变模型来生成应力应变场。然后,我们讨论了应力与应变与孔隙压力的耦合耦合,并提出了随时间变化的孔隙压力扩散的解析解。最后,我们使用两个例子-走滑和倾滑断层,来说明分析模型的应用以及地震对流体的影响。在两个故障系统中的应用表明,扩散时间比常规估计短,后者是基于扩散率和长度尺度的。我们发现扩散时间主要是系统扩散率的函数,而长度尺度会影响初始孔隙压力的大小。基于扩散率和长度的扩散时间可能会产生误导,因为在复杂的三维系统中会发生明显的局部流动。此外,当忽略剪应力效应时,孔隙压力变化的诱发模式类似于应变场,但是当将剪应力包括在耦合关系中时,则被显着改变。假设单发脱位,将发展这项工作的理论基础。但是,该方法和结果可以通过简单的叠加轻松地应用于研究多断层事件后的孔隙压力条件。 [参考:44]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号