首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-Train
【24h】

Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-Train

机译:来自A-Train的南大洋和北大西洋海上风暴轨道的云特性和辐射强迫

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Annually averaged cloud properties, cloud radiative effects, and cloud radiative heating from 20° x 20° latitude-longitude regions in the Southern Ocean (50°S, 135°W) and the North Atlantic (55°N, 25°W) are compared using quantities derived from measurements collected by active and passive remote sensors in the NASA A-Train. The algorithm suite used to infer cloud properties along the nadir track of the CloudSat and CALIPSO satellites takes input from the cloud boundaries from the merged active remote sensors, radar reflectivity from CloudSat, liquid water path derived from the Advanced Microwave Scanning Radiometer on Aqua, optical depth derived from the Moderate Resolution Imaging Spectroradiometer on Aqua, and top-of-atmosphere (TOA) fluxes measured by the Clouds and the Earth's Radiant Energy System. Errors in annually averaged cloud radiative effect are estimated to range from approximately 5 to 10 W M-2 and heating rate uncertainties range from 0.5 to 2 K day-1. The study regions demonstrate a high degree of similarity in cloud occurrence statistics, in cloud properties, and in the radiative effects of the clouds. Both regions are dominated by a background state of boundary layer clouds (mean liquid water path –150 gm-2). Boundary layer clouds and cirrus (mean ice water path –100 g m-2) occurring either alone or together amount to approximately 75% of all clouds. Deeper frontal clouds amount to 10%-12% of the coverage. A strong net TOA cooling effect is partitioned between solar cooling of the surface and IR cooling of the atmosphere that is dominated by the ubiquitous boundary layer clouds. It is shown that regimes inferred according to their cloud top pressure and optical depth are often dominated by multiple hydrometeor layers and therefore defy simple classification. Because of this vertical distribution, hydrometeor-induced heating is distributed within the atmosphere in a different way than would be inferred from passive remote-sensing data considered alone.
机译:来自南大洋(50°S,135°W)和北大西洋(55°N,25°W)的20°x 20°纬度-经度地区的年平均云特性,云辐射效应和云辐射热量为使用NASA A-Train中主动和被动远程传感器收集的测量结果得出的数量进行比较。用于推断CloudSat和CALIPSO卫星的最低点轨道上云特性的算法套件,从合并的有源遥感器的云边界获取输入,从CloudSat接收雷达反射率,从Aqua上的高级微波扫描辐射计得出的液态水路径,光学水深的适度分辨率成像光谱仪得出的深度,以及云层和地球辐射能系统测得的大气顶(TOA)通量。据估计,年平均云辐射效应的误差范围约为5至10 W M-2,加热速率不确定度的范围为0.5至2 K day-1。研究区域在云发生统计,云属性和云辐射效应方面显示出高度相似性。两个区域都以边界层云的背景状态(平均液态水路径–150 gm-2)为主导。单独或一起出现的边界层云和卷云(平均冰水路径– 100 g m-2)约占所有云的75%。较深的额叶云占覆盖率的10%-12%。强大的净TOA冷却效果在表面的太阳能冷却和由无处不在的边界层云控制的大气的IR冷却之间分配。结果表明,根据其云顶压力和光学深度推断出的模式通常由多个水凝物层控制,因此无法进行简单分类。由于这种垂直分布,与在单独考虑的被动遥感数据中得出的推论不同,水凝物引起的热量在大气中的分布方式不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号