首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Ozonesonde observations in the Arctic during 1989–2003: Ozone variability and trends in the lower stratosphere and free troposphere
【24h】

Ozonesonde observations in the Arctic during 1989–2003: Ozone variability and trends in the lower stratosphere and free troposphere

机译:1989-2003年北极的臭氧探空仪观测结果:低平流层和对流层中臭氧的变化和趋势

获取原文
获取原文并翻译 | 示例
           

摘要

We have studied the interannual and longer-term variations in ozone profiles over the Arctic from 1989 to 2003 using ozonesonde observations from seven northern high-latitude stations. The ozonesonde data have been carefully examined and made as internally consistent as possible. The homogenized measurements are analyzed with a statistical model. In both the stratosphere and troposphere the largest long-term changes have occurred in the late winter/spring period (January–April), the period of greatest interannual variability. In the stratosphere, layer ozone amounts correlate highly with proxies for the stratospheric circulation (100 hPa eddy heat flux averaged over 45–70°N), polar ozone depletion (the calculated volume of polar stratospheric clouds combined with the effective equivalent stratospheric chlorine) and tropopause height. At altitudes between 50 and 70 hPa, we estimate that chemical polar ozone depletion accounted for up to 50% of the March ozone variability. Negative trends in the lower stratosphere prior to 1997 can be attributed to the combined effect of dynamical changes, the impact of aerosols from the Mt. Pinatubo eruption and winters of relatively large chemical ozone depletion. Since 1996–1997 the observed increase in lower stratospheric ozone can be attributed primarily to dynamical changes. In the free troposphere, a statistically significant increase of 11.3 ± 1.8% over 15 years is observed which also maximizes in the January to April period (16.0 ± 3.1% over 15 years). The model suggests that this can be attributed to the effects of changes in the Arctic Oscillation.
机译:我们使用来自北部七个高纬度站的臭氧探空仪观测资料,研究了1989年至2003年北极地区臭氧剖面的年际和长期变化。臭氧探空仪的数据已经过仔细检查,并在内部尽可能保持一致。用统计模型分析均质的测量值。在平流层和对流层中,最大的长期变化发生在冬季/春季后期(一月至四月),这是年际变化最大的时期。在平流层中,臭氧层的含量与平流层环流的代理(在45-70°N范围内平均100 hPa涡流热通量),极地臭氧消耗(极地平流层云的计算量结合有效等效平流层氯)和高度相关。对流层高度。在50至70 hPa之间的海拔高度,我们估计化学极性臭氧的消耗量占3月臭氧变化量的50%。 1997年以前,平流层下部的负趋势可归因于动力变化的综合作用,即来自山的气溶胶的影响。皮纳图博火山喷发和冬季化学臭氧消耗相对较大。自1996-1997年以来,观测到的低平流层臭氧增加主要归因于动力变化。在自由对流层中,在15年中观察到统计学上显着的增加11.3±1.8%,在1月至4月期间也达到最大值(在15年中为16.0±3.1%)。该模型表明,这可以归因于北极涛动变化的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号