首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period
【24h】

Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period

机译:在2000年3月大气密集辐射运行期间,通过单列和云解析模型对中纬度锋云的模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This study quantitatively evaluates the overall performance of nine single-column models (SCMs) and four cloud-resolving models (CRMs) in simulating a strong midlatitude frontal cloud system taken from the spring 2000 Cloud Intensive Observational Period at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The evaluation data are an analysis product of constrained variational analysis of the ARM observations and the cloud data collected from the ARM ground active remote sensors (i.e., cloud radar, lidar, and laser ceilometers) and satellite retrievals. Both the selected SCMs and CRMs can typically capture the bulk characteristics of the frontal system and the frontal precipitation. However, there are significant differences in detailed structures of the frontal clouds. Both CRMs and SCMs overestimate high thin cirrus clouds before the main frontal passage. During the passage of a front with strong upward motion, CRMs underestimate middle and low clouds while SCMs overestimate clouds at the levels above 765 hPa. All CRMs and some SCMs also underestimated the middle clouds after the frontal passage. There are also large differences in the model simulations of cloud condensates owing to differences in parameterizations; however, the differences among intercompared models are smaller in the CRMs than the SCMs. In general, the CRM-simulated cloud water and ice are comparable with observations, while most SCMs underestimated cloud water. SCMs show huge biases varying from large overestimates to equally large underestimates of cloud ice. Many of these model biases could be traced to the lack of subgrid-scale dynamical structure in the applied forcing fields and the lack of organized mesoscale hydrometeor advections. Other potential reasons for these model errors are also discussed in the paper.
机译:这项研究定量地评估了9个单列模型(SCM)和4个云解析模型(CRM)在模拟强大的中纬度正面云系统时的整体性能,该系统取自2000年春季大气辐射测量(ARM)的云密集观测期大平原南部地区。评估数据是对ARM观测值和从ARM地面有源遥感器(即云雷达,激光雷达和激光云高仪)收集的云数据和卫星取回进行约束变异分析的分析产品。选定的SCM和CRM都通常可以捕获额叶系统的总体特征和额叶降水。但是,额叶云的详细结构存在显着差异。 CRM和SCM都高估了主要额叶通道之前的高稀疏卷云。在具有强烈向上运动的前部通过期间,CRM低估了中低云,而SCM高估了765 hPa以上的云。所有的CRM和一些SCM都低估了正面通过后的中间云层。由于参数设置的差异,云凝结水的模型模拟也存在很大差异。但是,CRM中相互比较的模型之间的差异比SCM小。一般而言,CRM模拟的云水和冰与观测值相当,而大多数SCM却低估了云水。 SCM表现出巨大的偏差,从高估到大估低云冰不等。这些模型偏差中的许多可以追溯到所应用的强迫场中缺乏亚网格尺度的动力结构以及缺乏有组织的中尺度水流平流。本文还讨论了导致这些模型错误的其他潜在原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号