首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)
【24h】

Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)

机译:热带成分,云与气候耦合实验(TC4)期间冰云短波光谱反照率的观测和建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Ice cloud optical thickness and effective radius have been retrieved from hyperspectral irradiance and discrete spectral radiance measurements for four ice cloud cases during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4) over a range of solar zenith angle (23°-53°) and high (46-90) and low (5-15) optical thicknesses. The retrieved optical thickness and effective radius using measurements at only two wavelengths from the Solar Spectral Flux Radiometer (SSFR) irradiance and the Moderate Resolution Imaging Spectroradiometer Airborne Simulator (MAS) were input to a radiative transfer model using two libraries of ice crystal single-scattering optical properties to reproduce spectral albedo over the spectral range from 400 to 2130 nm. The two commonly used ice single-scattering models were evaluated by examining the residuals between observed spectral and predicted spectral albedo. The SSFR and MAS retrieved optical thickness and effective radius were found to be in close agreement for the low to moderately optically thick clouds with a mean difference of 3.42 in optical thickness (SSFR lower relative to MAS) and 3.79 μmin effective radius (MAS smaller relative to S SFR). The higher optical thicknesscase exhibited a larger difference in optical thickness (40.5) but nearly identical results for effective radius. The single-scattering libraries were capable of reproducing the spectral albedo in most cases examined to better than 0.05 for all wavelengths. Systematic differences between the model and measurements increased with increasing optical thickness and approached 0.10 between 400 and 600 nm and selected wavelengths between 1200 and 1300 nm. Differences between radiance and irradiance based retrievals of optical thickness and effective radius error sources in the modeling of ice single-scattering properties are examined.
机译:在太阳天顶角(23°-53°)范围内的热带组成,云和气候耦合实验(TC4)期间,从4个冰云案例的高光谱辐照度和离散光谱辐射测量中获取了冰云的光学厚度和有效半径。高(46-90)和低(5-15)光学厚度。使用两个光谱的冰晶单散射库,仅使用来自太阳光谱通量辐射仪(SSFR)辐照度和中分辨率成像光谱仪辐射机载模拟器(MAS)的两个波长处的测量值来检索光学厚度和有效半径。光学特性可在400至2130 nm的光谱范围内再现光谱反照率。通过检查观测光谱和预测光谱反照率之间的残差,评估了两个常用的冰单散射模型。发现SSFR和MAS检索到的光学厚度和有效半径与低至中等光学厚度的云非常一致,其平均光学厚度差为3.42(相对于MAS较低,SSFR)和3.79μmin有效半径(相对于MAS较小)至S SFR)。较高的光学厚度情况显示出较大的光学厚度差异(40.5),但有效半径的结果几乎相同。在大多数情况下,单散射库能够将光谱反射率再现为所有波长均优于0.05。模型和测量之间的系统差异随着光学厚度的增加而增加,并且在400至600 nm之间以及选定的1200至1300 nm之间的波长接近0.10。在冰单散射特性的建模中,研究了基于辐射和辐照度的光学厚度和有效半径误差源检索之间的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号