首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Refinement of the Geophysical Fluid Dynamics Laboratory solar benchmark computations and an improved parameterization for climate models
【24h】

Refinement of the Geophysical Fluid Dynamics Laboratory solar benchmark computations and an improved parameterization for climate models

机译:完善地球物理流体动力学实验室的太阳基准计算和改进的气候模型参数

获取原文
获取原文并翻译 | 示例
           

摘要

A recent intercomparison study of solar radiative transfer models has revealed a notable difference (5%) in the total spectrum column absorptance, for a specified clear-sky atmospheric profile, between two principal line-by-line benchmark results (namely, the Geophysical Fluid Dynamics Laboratory (GFDL) and the Atmospheric and Environmental Research, Inc. models). We resolve this discrepancy by performing a series of “benchmark” computations which show that the water vapor continuum formulation, spectral line information, and spectral distribution of the solar irradiance at the top of the atmosphere are key factors. Accounting for these considerations reduces the difference between the two benchmarks to less than 1%. The analysis establishes a high level of confidence in the use of benchmark calculations for developing and testing solar radiation parameterizations in weather and climate models. The magnitude of the change in absorption in the newer GFDL benchmark computations, associated with the use of a more recent spectral line catalog and inclusion of the water vapor continuum, has also necessitated revising the solar parameterization used in the operational GFDL general circulation model (GCM). When compared with the newer reference computation, the older parameterization shows an underestimate of the clear-sky heating rate throughout the atmosphere, with the error in the atmospheric solar absorbed flux being about 20 W m?2 for a midlatitude summer atmosphere and overhead Sun. In contrast, the new parameterization improves the representation of the solar absorption and reduces the bias to about 5 W m?2. Another important feature of the new parameterization is a nearly 50% reduction in the number of pseudomonochromatic columnar calculations compared to the older formulation, with only relatively small increases in the biases in absorption for cloudy layers. This yields a reduction of about 10% in the GCM computational time. The effect of the new parameterization on the simulated temperature in the new operational GFDL climate GCM is also examined. There is an increased solar heating; this yields temperature increases exceeding 1 K in the lower stratosphere.
机译:最近对太阳辐射传输模型的比较研究表明,对于两个特定的逐行基准测试结果(即地球物理流体),对于指定的晴空大气剖面,总光谱柱吸收率之间存在显着差异(5%)动力学实验室(GFDL)和大气与环境研究公司模型)。我们通过执行一系列“基准”计算解决了这一差异,这些计算表明,水汽连续体配方,光谱线信息以及大气层顶部太阳辐照度的光谱分布是关键因素。考虑这些因素后,两个基准之间的差异减少到不足1%。该分析建立了使用基准计算来开发和测试天气和气候模型中太阳辐射参数化的高度信心。较新的GFDL基准计算中吸收变化的幅度,与使用最新的光谱线目录和纳入水蒸气连续量有关,还必须修改运行GFDL通用循环模型(GCM)中使用的太阳参数化)。与较新的参考计算相比,较旧的参数化显示低估了整个大气层的晴空加热速率,对于中纬度夏季大气和头顶太阳,大气层太阳吸收通量的误差约为20 W m?2。相反,新的参数化改善了太阳吸收的表示,并将偏压降低到约5 W m?2。新参数化的另一个重要特征是,与较旧的公式相比,伪单色柱状计算的数量减少了近50%,而对于浑浊层的吸收偏差仅有相对较小的增加。这将使GCM计算时间减少约10%。还检查了新参数化对新运行的GFDL气候GCM中的模拟温度的影响。太阳的采暖增加了。在较低的平流层中,温度升高超过1K。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号