...
首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons
【24h】

Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across seasons

机译:陆地海冰(阿拉斯加巴罗)的物理和生物地球化学性质:跨季节的盐水和天然气动力学的见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The impacts of the seasonal evolution of sea-ice physical properties on ice-ocean biogeochemical exchanges were investigated in landfast ice at Barrow (Alaska) from January through June 2009. Three stages of brine dynamics across the annual cycle have been identified based on brine salinity, brine volume fraction, and porous medium Rayleigh number (Ra). These are sea-ice bottom-layer convection, full-depth convection, and brine stratification. We further discuss the impact of brine dynamics on biogeochemical compounds in sea ice: stable isotopes of water (δD, δ~(18)O), nutrients (NO_3~ -, PO_4~(3-), NH_4~ +), microalgae (chlorophyll-a), and inert gas (argon). In general, full-depth convection events favor exchanges between sea ice and seawater, while brine stratification limits these exchanges. However, argon responds differently to brine dynamics than the other biogeochemical compounds analyzed in this study. This contrast is attributed to the impact of bubble nucleation on inert gas transport compared to the other biogeochemical compounds. We present a scenario for argon bubble formation and evolution in sea ice and suggest that a brine volume fraction approaching 7.5-10% is required for inert gas bubbles to escape from sea ice to the atmosphere. Key Points The stages of the brine dynamics within sea ice over the full growth-decay cycle Link between brine dynamics and ice-ocean exchanges of biogeochemical compounds First scenario for inert gas entrapment and migration in sea ice
机译:2009年1月至2009年6月,在阿拉斯加的巴罗(Barrow)的陆冰中研究了海冰物理特性的季节性演变对冰海生物地球化学交换的影响。基于盐水盐度,确定了整个年度周期的三个盐水动力学阶段,盐水体积分数和多孔介质瑞利数(Ra)。这些是海冰底层对流,全深度对流和盐水分层。我们进一步讨论了盐水动力学对海冰中生物地球化学化合物的影响:水的稳定同位素(δD,δ〜(18)O),营养物(NO_3〜-,PO_4〜(3-),NH_4〜+),微藻(叶绿素a)和惰性气体(氩气)。通常,全深度对流事件有利于海冰与海水之间的交换,而盐水分层则限制了这些交换。但是,与本研究中分析的其他生物地球化学化合物相比,氩气对盐水动力学的响应不同。与其他生物地球化学化合物相比,这种对比归因于气泡成核对惰性气体传输的影响。我们提出了海泡中氩气气泡形成和演化的方案,并建议需要惰性气体气泡从海冰逸出到大气中的盐水体积分数接近7.5-10%。关键点在整个生长-衰减周期内,海冰中盐水动力学的阶段。盐水动力学与生物地球化学化合物的冰洋交换之间的联系惰性气体截留和在海冰中迁移的第一种情况

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号