首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms
【24h】

Ocean heat transport in Simple Ocean Data Assimilation: Structure and mechanisms

机译:简单海洋数据同化中的海洋热传输:结构和机制

获取原文
获取原文并翻译 | 示例
           

摘要

The trend and variability of global ocean heat transport for the period 1958-2004 are investigated using the Simple Ocean Data Assimilation (SODA) analysis. The ocean model is forced with the European Center for Medium Range Weather Forecast (ECMWF) ERA-40 atmospheric reanalysis winds from 1958 to 2001 and with QuikSCAT winds from 2002 to 2004. The assimilation is based on a sequential estimation algorithm, with observations from the historical archive of hydrographic profiles supplemented by ship intake measurements, moored hydrographic observations and remotely sensed sea surface temperature. Heat transport is calculated using temperature and velocity from the ocean analysis. Mean heat transport from the analysis generally agrees with previously published estimates from observational and modeling studies. Trends of heat transport show a range of behaviors. In the Atlantic and Pacific Oceans there is mostly increasing poleward heat transport with two important exceptions. In the Atlantic Ocean there is decreasing heat transport around 50°N and 60°N, and in both the Atlantic and Pacific Oceans there is decreasing heat transport near 10°S. There is also prominent interannual and decadal variability in all of the ocean basins. The results suggest that ocean heat transport variability is primarily determined by the strength of the meridional overturning circulation (MOC), which is controlled by complex processes governing fresh water flux in the northern North Atlantic and surface wind stress. However, the role of temperature variability increases at high latitude, particularly in the northern North Atlantic Ocean. Eddies play an important role in heat transport in the Gulf Stream and its extension in the Atlantic Ocean, and the Kuroshio and its extension in the Pacific Ocean and enhanced Subtropical cells (STCs) affect heat transport estimates in the tropics. In the northern North Atlantic Ocean, a small increase in meridional heat transport and a slight weakening of MOC are detected. Weakening in the northern North Atlantic MOC mainly arises from a freshening in the Labrador Sea and slowdown of the overflows from the Nordic Seas into the northern North Atlantic Ocean. Trends in North Atlantic surface momentum forcing are uniform across several atmospheric reanalyses, however there is less agreement in the role of precipitation in forcing trends of MOC and this exists as a primary source of uncertainty in our analysis.
机译:使用简单海洋数据同化(SODA)分析研究了1958-2004年期间全球海洋热传输的趋势和可变性。 1958年至2001年,欧洲中距离天气预报中心(ECMWF)ERA-40大气再分析风和2002年至2004年,QuikSCAT风推动了该海洋模型。同化基于顺序估计算法,并从水文概况的历史档案,辅以船舶进水口测量,系泊水文观测和遥感海表温度。使用海洋分析中的温度和速度来计算热传输。分析得出的平均热量传输通常与先前发表的观察和模型研究得出的估计一致。传热趋势显示出一系列行为。在大西洋和太平洋,除两个重要的例外外,极地热传输主要在增加。在大西洋,大约50°N和60°N附近的热传递减少,在大西洋和太平洋附近,大约10°S的热传递都减少。在所有海盆中也存在明显的年际和年代际变化。结果表明,海洋热传输的变异性主要由子午翻转循环强度(MOC)决定,而子午翻转强度由控制北大西洋北部淡水通量和地表风应力的复杂过程控制。但是,温度变化的作用在高纬度地区增加,特别是在北大西洋北部。涡流在墨西哥湾流及其在大西洋中的传热中起着重要作用,而黑潮及其在太平洋中的传热和增强的亚热带细胞(STC)会影响热带地区的传热估计。在北大西洋北部,探测到子午热传输略有增加,而MOC略有减弱。北大西洋北部MOC的减弱主要来自拉布拉多海的新鲜化以及北欧海向北大西洋北部的溢流的减缓。在多个大气再分析中,北大西洋表面动量强迫的趋势是一致的,但是,在MOC强迫趋势中,降水的作用并没有达成共识,这是我们分析中不确定性的主要来源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号