首页> 外文期刊>Diffusion and Defect Data. Solid State Data, Part A. Defect and Diffusion Forum >An Improved Heat Equation to Model Ductile-To-Brittle Failure Mode Transition at High Strain Rates Using Fully Coupled Thermal-Structural Finite Element Analysis
【24h】

An Improved Heat Equation to Model Ductile-To-Brittle Failure Mode Transition at High Strain Rates Using Fully Coupled Thermal-Structural Finite Element Analysis

机译:使用全耦合热结构有限元分析的改进热方程,以高应变速率模拟延性-脆性破坏模式的转变

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper a universal heat equation for fully coupled thermal-structural finite element analysis of deformable solids capable of predicting ductile-to-brittle failure mode transition at high strain rates is presented. In the problem mathematical formulation appropriate strain measures describing the onset and the growth of ductile and total damage and heat generation rate per unit volume to model dissipation-induced heating have been employed, which were extended with the heat equation. The model was implemented into a finite element code utilizing an improved weak form for updated Lagrangian formulation, an extended NoIHKH material model for cyclic plasticity of metals applicable in wide range of strain rates and the Jaumann rate in the form of the Green- Naghdi rate in the co-rotational Cauchy's stress objective integration. The model verification showed excellent agreement with the modelled experiment at low strain rates. Plastic bending of a cantilever has been studied at higher strain rates. A few selected analysis results are presented and briefly discussed.
机译:本文提出了一种通用热方程,用于对可变形固体进行完全耦合的热结构有限元分析,能够预测高应变速率下韧性到脆性破坏模式的转变。在问题的数学公式中,采用了适当的应变措施来描述延性和总损伤的发生和增长,以及每单位体积的总产热率,以模拟耗散引起的加热,并通过热方程进行了扩展。使用改进的弱形式更新拉格朗日公式将模型实施为有限元代码,扩展的NoIHKH材料模型适用于金属的循环可塑性,适用于广泛的应变率和格林曼-纳格迪率形式的Jaumann率。同旋转柯西的应力目标整合。在低应变速率下,模型验证表明与建模实验具有极好的一致性。悬臂的塑性弯曲已经在较高的应变速率下进行了研究。介绍并简要讨论了一些选定的分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号