...
首页> 外文期刊>Journal of Functional Analysis >INVARIANCE PRINCIPLES FOR PARABOLIC EQUATIONS WITH RANDOM COEFFICIENTS
【24h】

INVARIANCE PRINCIPLES FOR PARABOLIC EQUATIONS WITH RANDOM COEFFICIENTS

机译:具有随机系数的抛物型方程的不变原理。

获取原文
获取原文并翻译 | 示例
           

摘要

A general Hilbert-space-based stochastic averaging theory is brought forth herein for arbitrary-order parabolic equations with (possibly long range dependent) random coefficients. We use regularity conditions on (1) partial derivative(t)u(epsilon)(t, x) = Sigma(0 less than or equal tokless than or equal to 2p) A(k)(t/epsilon, x, omega) partial derivative(x)(k)u(epsilon)(t, x), u(epsilon)(0, x) = phi(x) which are slightly stronger than those required to prove pathwise existence and uniqueness for (1). Equation (1) can be obtained from the singularly perturbed system (2) partial derivative(v)v(epsilon)(tau, x) = Sigma(0 less than or equal tokless than or equal to 2p epsilon A?k(tau, x, omega) partial derivative(x)(k)v(epsilon)(tau, x), v(epsilon)(0, x) = phi(x) through time change. Next, we impose on the coefficients of (1) a pointwise (in x and I) weak law of large numbers and a weak invariance principle (3) {epsilon(h) integral(0)(u-1) A(k)(x, s) - A(k)(0)(x) ds}(kless than or equal to 2p double right arrow {Theta?k}?(kless than or equal to 2p) in C([0, T], H-1), H-1 being a separable Hilbert space of functions and h is an element of (0, ii denoting a constant. (h > 1/2 allows for long range time dependence.) Then, under these extraordinarily general conditions, we infer the weak invariance principle epsilon(h-1)(u(epsilon) - u) double right arrow (y) over cap. It is the non-random, epsilon-homogeneous solution of (4) partial derivative(t)u(t, x) = Sigma(0 less than or equal tokless than or equal to 2p) A(k)(0)(x) partial derivative(x)(k)u(t, x), u(0, x) = phi(x) and (y) over cap mildly satisfies the linear stochastic partial differential equation (5) partial derivative(t) (y) over cap(t, x) = Sigma(kless than or equal to 2p) A(k)(0)(x) partial derivative(x)(k) (y) over cap(t, x) dt + Sigma(kless than or equal to 2p Theta?k(dt, x) partial derivative(x)(k)u(t, x). (C) 1997 Academic Press. [References: 22]
机译:本文针对具有(可能取决于长程)随机系数的任意阶抛物线方程提出了一种基于希尔伯特空间的一般随机平均理论。我们对(1)偏导数(t)u(ε)(t,x)= Sigma(0小于或等于 k 小于或等于2p)A(k)(t / epsil, x,omega)偏导数(x)(k)u(epsilon)(t,x),u(epsilon)(0,x)= phi(x)略强于证明路径的存在性和唯一性(1)。方程(1)可以从奇摄动系统(2)获得。偏导数(v)v(ε)(tau,x)= Sigma(0小于或等于 k 小于或等于2pεA? k(tau,x,ω)偏导数(x)(k)v(epsilon)(tau,x),v(epsilon)(0,x)= phi(x)通过时间变化。 (1)的系数(在x和I中)的大数定律和弱不变性原理(3){epsilon(h)积分(0)(u-1)A(k)(x,s- A(k)(0)(x)ds}( k 小于或等于2p双右箭头{Theta?k}?( k 小于或等于2p)在C([0,T] ,H-1),H-1是函数的可分离希尔伯特空间,h是(0,ii表示常数。(h> 1/2允许长时程依赖)的元素。的条件下,我们推论帽的弱不变性原理epsilon(h-1)(u(epsilon)-u)双右箭头(y),它是(4)偏导数(t)的非随机,ε齐次解)u(t,x)= Sigma(0小于或等于小于或等于2p)A(k)(0)(x)偏导数(x)(k)u(t,x),u(0,x)= phi(x)和(y )稍微满足线性随机偏微分方程(5)超过(t,x)的偏导数(t)(y)= Sigma( k 小于或等于2p)A(k)(0)( x)cap(t,x)dt + Sigma( k 小于或等于2p Theta?k(dt,x)偏导数(x)(k)u (t,x)。 (C)1997学术出版社。 [参考:22]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号