首页> 外文期刊>Journal of Functional Analysis >RENORMALIZED DIFFERENTIAL GEOMETRY ON PATH SPACE - STRUCTURAL EQUATION, CURVATURE
【24h】

RENORMALIZED DIFFERENTIAL GEOMETRY ON PATH SPACE - STRUCTURAL EQUATION, CURVATURE

机译:路径空间上的规范化微分几何-结构方程,曲率

获取原文
           

摘要

The theory of integration in infinite dimensions is in some sense the backbone of probability theory. On this backbone the stochastic calculus of variations has given rise to the flesh of differential calculus. Its first step is the construction at each point of the probability space of a Cameron-Martin-like tangent space in which the desired differential calculus can be developed. This construction proceeds along the lines of first-order differential geometry. In this paper we address the following questions: what could be the meaning of ''curvature of the probability space''-how and why? How can curvatures be defined and computed? Why could a second-order differential geometry be relevant to stochastic analysis? We try to answer these questions for the probability space associated to the Brownian motion of a compact Riemannian manifold. Why? A basic energy identity for anticipative stochastic integrals will be obtained as a byproduct of our computation of curvature. How? There are essentially four bottlenecks in the development of differential geometry on Wiener-Riemann manifolds: (i) the difficulty of finding an atlas of local charts such that the changes of charts preserve the class of the Wiener-like measures together with their associated Cameron-Martin-like tangent spaces; (ii) the difficulty of finding cylindrical approximations preserving the natural geometrical objects; (iii) the difficulty of renormalizing the divergent series to which the summation operations of finite dimensional differential geometry give rise in the non intrinsic context of local charts; (iv) the nonavailability of the computational procedures analogous to the local coordinates systems of the classical differential geometry. In the context of path space, the Ito filtration provides a much richer structure than that available in the framework of an abstract Wiener-Riemann manifold. Our work is a systematic attempt to replace the machinery of local charts with a methodology of moving frames. In our context, stochastic parallel transport provides a canonical moving frame on the path space. The concept of a cylindrical approximation has to be reshaped in our new situation into some geometric limit theorems, establishing that the Riemannian geometric objects of the cylindrical approximations induce by a limiting procedure geometric objects on the path space. Those limit theorems are reminiscent of the classical theorems which say that a Stratonovich SDE is the limit of an appropriate sequence of ODE. The canonical coordinate system provided by the moving frame will make it possible to proceed to the needed renormalizations by intrinsic stochastic integrals; in this context the anticipative stochastic integral theory of Nualart and Pardoux will play a decisive role. Finally, the moving frame will provide an effective algorithm of computation for this differential geometry in infinite dimensions. In our study we encounter a new type of renormalization, the hypoelliptic renormalization, which corresponds to the fact that the bracket of smooth vector fields taking their values in the Cameron-Martin space can get out of this Cameron-Martin space. This hypoelliptic problem induces the nonrenormalizability of some geometrical objects. It leads also to a concept of tangent processes to probability spaces extending that based on the Cameron-Martin Theorem. For tangent processes a formula of integration by parts still holds; furthermore the tangent processes form a Lie algebra under the bracket. On the other hand, tangent processes cannot be stochastically integrated: this operation is well defined only for Cameron-Martin-type vector fields. (C) 1996 Academic Press, Inc. [References: 33]
机译:无限维积分理论在某种意义上是概率论的基础。在这个主干上,变异的随机演算引起了微分演算的充实。它的第一步是在类似Cameron-Martin切线空间的概率空间的每个点上构建,在其中可以开发所需的微积分。这种构造沿一阶微分几何的线进行。在本文中,我们解决以下问题:“概率空间的曲率”的含义是什么?如何以及为什么?如何定义和计算曲率?为什么二阶微分几何与随机分析有关?我们尝试为与紧凑黎曼流形的布朗运动相关的概率空间回答这些问题。为什么?预期随机积分的基本能量恒等式将作为我们计算曲率的副产品而获得。怎么样? Wiener-Riemann流形上的微分几何学的发展基本上有四个瓶颈:(i)难以找到局部图集,从而使图的更改保留类似Wiener的度量及其相关的Cameron-类马丁切线空间; (ii)难以找到保留自然几何物体的圆柱近似值; (iii)在局部图的非内在上下文中难以对归因于有限维微分几何求和运算的发散序列进行规格化; (iv)无法使用类似于经典微分几何的局部坐标系的计算程序。在路径空间的情况下,与抽象的Wiener-Riemann流形框架相比,Ito过滤提供的结构要丰富得多。我们的工作是系统地尝试用移动框架方法代替本地图表的机制。在我们的上下文中,随机并行传输在路径空间上提供了规范的移动框架。在我们的新情况下,必须将圆柱近似的概念重塑为一些几何极限定理,从而确定圆柱近似的黎曼几何对象是由路径空间上的极限过程几何对象引起的。这些极限定理使人联想到经典定理,经典定理说Stratonovich SDE是适当ODE序列的极限。由移动框架提供的规范坐标系将使通过内在随机积分进行所需的重归一化成为可能。在这种情况下,Nualart和Pardoux的预期随机积分理论将起决定性作用。最后,移动框架将为无限尺寸的这种微分几何提供有效的计算算法。在我们的研究中,我们遇到了一种新的重归一化类型,即次椭圆形重归一化,这对应于以下事实:在Cameron-Martin空间中采用其值的光滑向量场的括号可以脱离该Cameron-Martin空间。该次椭圆问题引起某些几何对象的不可重归一化。它也导致了对概率空间的切线过程的概念,该切线过程扩展了基于卡梅隆-马丁定理的概率空间。对于切线过程,零件的积分公式仍然成立。此外,切线过程在括号下形成一个李代数。另一方面,切线过程不能随机集成:仅对Cameron-Martin类型的矢量场进行了很好的定义。 (C)1996 Academic Press,Inc. [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号