首页> 外文期刊>Journal of Glaciology >Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations
【24h】

Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations

机译:冰盖表面高度对积聚和温度变化引起的南极杉木压实速率变化的响应时间

获取原文
获取原文并翻译 | 示例
           

摘要

Variations in accumulation rate A(s)(t) and temperature T-s(t) at the surface of firn cause changes in the rate of firn compaction (FC) and surface height H(t) that do not involve changes in mass, and therefore need to be accounted for in deriving mass changes from measured H(t). As the effects of changes in A(s)(t) and T-s(t) propagate into the firn, the FC rate is affected with a highly variable and complex response time. The H(t) during measurement periods depend on the history of A(s)(t) and T-s(t) prior to the measurements. Consequently, knowledge of firn response times to climate perturbations is important to estimate the required length of the time series of A(s)(t) and T-s(t) used in FC models. We use our numerical FC model, which is time-dependent on both temperature and accumulation rate, to examine the response times of both H(t) and the rates of change dH(t)/dt to variations in A(s)(t) and T-s(t) using sample perturbations and climate data for selected sites in Antarctica. Our results show that the response times for dH(t)/dt, which are of particular interest, are much shorter than the responses of H(t). Typical response times of dH(t)/dt are from several years to <20 years. The response times are faster in warmer and higher-accumulation areas such as Byrd Station, West Antarctica (4 years), and slower in colder and lower-accumulation areas such as Vostok, East Antarctica (18 years). The response times to temperature are much faster (0.9 year at Byrd and 2.2 years at Vostok), but the corresponding height changes persist much longer. The associated variations in firn density are significantly preserved in the density depth profiles. For typical fluctuations of surface weather, the Ts(()t) from satellite observations since 1982 and A(s)(t) from meteorological data since 1979 are essentially of sufficient length to correct for FC height changes for measurements beginning in 1992.
机译:炉头表面累积速率A(s)(t)和温度Ts(t)的变化会引起炉头压紧率(FC)和表面高度H(t)的变化,而这些变化不涉及质量的变化,因此从测量的H(t)得出质量变化时需要考虑在内。随着A(s)(t)和T-s(t)的变化影响传播到燃料中,FC速率受到高度可变和复杂的响应时间的影响。测量期间的H(t)取决于测量之前的A(s)(t)和T-s(t)的历史记录。因此,对气候扰动的响应响应时间的知识对于估计FC模型中使用的A(s)(t)和T-s(t)的时间序列所需的长度很重要。我们使用数值FC模型来检验H(t)的响应时间以及dH(t)/ dt对A(s)(t )和Ts(t),使用样本扰动和南极洲特定地点的气候数据。我们的结果表明,特别令人感兴趣的dH(t)/ dt的响应时间比H(t)的响应时间短得多。 dH(t)/ dt的典型响应时间为几年到<20年。在温暖和高聚积地区(如南极洲的伯德站),响应时间更快(4年),在寒冷和低聚积区(如南极东部的沃斯托克),响应时间则较慢(18年)。对温度的响应时间要快得多(伯德为0.9年,沃斯托克为2.2年),但是相应的高度变化持续的时间更长。烧成密度的相关变化在密度深度曲线中得到了显着保留。对于典型的地面天气波动,自1982年以来卫星观测的Ts((t))和自1979年以来气象数据的A(s)(t)的长度基本上足以校正自1992年开始测量的FC高度变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号