首页> 外文期刊>Clinical pharmacokinetics >Individualising aminoglycoside dosage regimens after therapeutic drug monitoring: simple or complex pharmacokinetic methods?
【24h】

Individualising aminoglycoside dosage regimens after therapeutic drug monitoring: simple or complex pharmacokinetic methods?

机译:监测治疗药物后个体化氨基糖苷剂量方案:简单还是复杂的药代动力学方法?

获取原文
获取原文并翻译 | 示例
       

摘要

Measurements of aminoglycoside concentration in serum are used to individualise dosage regimens (dose per administration and/or administration interval) with the goal of attaining the desired therapeutic range as quickly as possible. Therapeutic range is defined in terms of peak concentration (to monitor effectiveness) and trough concentration (to avoid toxicity). This article focuses on methods to individualise aminoglycoside dosage regimens in the context of extended dosage intervals. Simple pharmacokinetic methods involve linear dosage adjustment based on peak or trough concentrations or area under the concentration-time curve, or nomograms. The once daily aminoglycoside nomogram determines the dosage interval for aminoglycosides given as a fixed dose per administration, based on a single concentration measurement drawn 6 to 14 hours after the start of the first infusion. This is a preferred method because of its simplicity, strong pharmacodynamic rationale and prospective validation in a large population. However, it does not work when the fixed dose assumed is not relevant, for example for patients with burns, cystic fibrosis, ascites or pregnancy. Furthermore, it has not been validated in children. In these cases, a more sophisticated method is required. Complex pharmacokinetic methods require dedicated software. Non-Bayesian least-squares methods allow the optimisation of both the dose and the dosage interval, but require aminoglycoside concentrations from two or more samples taken in the post-distributive phase during a single dosage interval. With Bayesian least-squares methods, only one concentration measurement is required, although any number of samples can be taken into account. In the Bayesian maximum a posteriori (MAP) method, the parameter estimates are taken as the values corresponding to the maximum of the posterior density. In 'full' Bayesian approaches (also called stochastic control), all the information about the parameters revealed by the posterior distribution is taken into account, and the optimal regimen is found by minimising the expected value of the weighted sum of squared deviations between predicted and target concentrations. If the population model is reasonably well known, Bayesian methods (MAP or stochastic control) should be used because of their good predictive performance. Although only one concentration measurement is required, better precision is afforded by a two-sample strategy, preferably drawn 1 and 6 hours after the start of the first infusion. If the population model is not known, then the non-Bayesian least-squares method is the method of choice, because of its robustness and lack of requirement for prior information about the distribution of parameters in the population.
机译:血清中氨基糖苷浓度的测量用于个体化剂量方案(每次给药的剂量和/或给药间隔),目的是尽快达到所需的治疗范围。根据峰浓度(以监测有效性)和谷浓度(以避免毒性)定义治疗范围。本文重点介绍在延长剂量间隔的情况下个性化氨基糖苷给药方案的方法。简单的药代动力学方法包括根据峰-谷浓度或峰-谷浓度或浓度-时间曲线或面积图下的面积进行线性剂量调整。每天一次的氨基糖苷诺模图确定了每次给药后以固定剂量给予的氨基糖苷的剂量间隔,该剂量间隔基于第一次输注开始后6至14小时绘制的单次浓度测量值。这是一种首选方法,因为它具有简单性,强大的药效学原理以及在大量人群中的前瞻性验证。但是,如果假定的固定剂量与患者无关,例如烧伤,囊性纤维化,腹水或怀孕的患者,则无效。此外,它尚未在儿童中得到验证。在这些情况下,需要一种更复杂的方法。复杂的药代动力学方法需要专用软件。非贝叶斯最小二乘方法可以优化剂量和剂量间隔,但是需要在单个剂量间隔内从分布后阶段采集的两个或多个样品中获得氨基糖苷浓度。使用贝叶斯最小二乘法,尽管可以考虑任意数量的样品,但仅需要一次浓度测量。在贝叶斯最大后验(MAP)方法中,将参数估计值视为对应于后验密度最大值的值。在“完全”贝叶斯方法(也称为随机控制)中,考虑了关于后验分布揭示的参数的所有信息,并通过最小化预测值与预测值之间的平方差的加权和的期望值来找到最佳方案。目标浓度。如果总体模型是众所周知的,则应使用贝叶斯方法(MAP或随机控制),因为它们具有良好的预测性能。尽管只需要进行一次浓度测量,但是通过两次采样策略可以提供更好的精度,最好是在第一次输注开始后1和6小时抽取。如果总体模型未知,则非贝叶斯最小二乘法是一种选择方法,因为它的鲁棒性和对总体中参数分布的先验信息的要求不高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号