...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects
【24h】

A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects

机译:电离层对向上传播的潮汐的响应理论:电动力效应和潮汐混合效应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The atmospheric tide at ionospheric heights is composed of those locally generated and those propagated from below. The role of the latter in producing the variability of the daytime ionosphere is examined using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The impact of upward-propagating tides is evaluated by running simulations with and without tidal forcing at the lower boundary (approximately 96 km), which imitates the effect of tides from below. When migrating diurnal and semidiurnal tides at the lower boundary is switched on, the intensity of E region currents and the upward velocity of the equatorial F region vertical plasma drift rapidly increase. The low-latitude ionospheric total electron content (TEC) first increases, then gradually decreases to below the initial level. The initial increase in the low-latitude TEC is caused by an enhanced equatorial plasma fountain while the subsequent decrease is due to changes in the neutral composition, which are characterized by a global-scale reduction in the mass mixing ratio of atomic oxygen O_1. The results of further numerical experiments indicate that the mean meridional circulation induced by dissipating tides in the lower thermosphere is mainly responsible for the O_1 reduction; it acts like an additional turbulent eddy and produces a "mixing effect" that enhances net downward transport and loss of O_1. It is stressed that both electrodynamic effects and mixing effects of upward-propagating tides can be important in producing the variability of ionospheric plasma density. Since the two mechanisms act in different ways on different time scales, the response of the actual ionosphere to highly variable upward-propagating tides is expected to be complex. Key Points Upward-propagating tides provide electrodynamic effects and mixing effectsElectrodynamic effects can enhance the ionospheric plasma densityTidal mixing effects can reduce the ionospheric plasma density
机译:电离层高度的潮汐由局部产生的潮汐和从下方传播的潮汐组成。使用国家大气研究中心热层-电离层-电动力学通用环流模型检查了后者在产生白天电离层变化中的作用。通过在下边界(约96 km)处有或没有潮汐强迫的运行模拟来评估向上传播的潮汐的影响,该模拟模仿了潮汐的作用。当在下边界处的日潮和半日潮移动时,E区电流的强度和赤道F区垂直等离子漂移的向上速度迅速增加。低纬度电离层总电子含量(TEC)首先增加,然后逐渐减少到初始水平以下。低纬度TEC的初始增加是由增强的赤道等离子喷泉引起的,而随后的下降是由于中性成分的变化而引起的,中性成分的变化以原子氧O_1的质量混合比的整体降低为特征。进一步的数值实验结果表明,潮汐消散引起的平均子午环流是造成O_1减少的主要原因。它的作用类似于附加的湍流涡流,并产生“混合效应”,从而增强了向下净输送和O_1的损失。要强调的是,电动力效应和向上传播的潮汐的混合效应对于产生电离层等离子体密度的变化都可能很重要。由于这两种机制在不同的时间尺度上以不同的方式起作用,因此实际电离层对高度变化的向上传播的潮汐的响应预计会很复杂。要点向上传播的潮汐提供电动力效应和混合效应电动力效应可以提高电离层等离子体密度潮汐混合效应可以降低电离层等离子体密度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号