首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics
【24h】

A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics

机译:平流层突然变暖对热层动力学和电动力学影响的整体大气模型模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A Whole Atmosphere Model (WAM) has been used to explore the possible physical connection between a sudden stratospheric warming (SSW) and the dynamics and electrodynamics of the lower thermosphere. WAM produces SSWs naturally without the need for external forcing. The classical signatures of an SSW appear in the model with a warming of the winter polar stratosphere, a reversal of the temperature gradient, and a breakdown of the stratospheric polar vortex. Substantial changes in the amplitude of stationary planetary wave numbers 1, 2, and 3 occur as the zonal mean zonal wind evolves. The simulations also show a cooling in the mesosphere and a warming in the lower thermosphere consistent with observations. The magnitude of this particular SSW is modest, belonging to the category of minor warming. In the lower thermosphere the amplitude of diurnal, semidiurnal, and terdiurnal, eastward and westward propagating tidal modes change substantially during the event. Since the magnitude of the warming is minor and the tidal interactions with the mean flow and planetary waves are complex, the one-to-one correspondence between tidal amplitudes in the lower thermosphere and the zonal mean and stationary waves in the stratosphere is not entirely obvious. The increase in the magnitude of the terdiurnal tide (TW3) in the lower thermosphere has the clearest correlation with the SSW, although the timing appears delayed by about three days.The fast group velocity of the long vertical wavelength TW3 tide would suggest a faster onset for the direct propagation of the tide from the lower atmosphere. It is possible that changes in the magnitude of the diurnal and semidiurnal tides, with their slower vertical propagation, may interact in the lower thermosphere to introduce a terdiurnal tide with a longer delay. An increase in TW3 in the lower thermosphere would be expected to alter the local time variation of the electrodynamic response. The day-to-day changes in the lower thermosphere winds from WAM are shown to introduce variability in the magnitude of dayside low latitude electric fields, with a tendency during the warming for the dayside vertical drift to be larger and occur earlier, and for the afternoon minimum to be smaller. The numerical simulations suggest that it is quite feasible that a major SSW, with a magnitude seen in January 2009, could cause large changes in lower thermosphere electrodynamics and hence in total electron content.
机译:整个大气模型(WAM)已被用于探索平流层突然变暖(SSW)与较低热层动力学和电动力学之间可能存在的物理联系。 WAM自然产生SSW,而无需外部强制。 SSW的经典特征出现在冬季极地平流层变暖,温度梯度逆转以及平流层极涡旋破裂的模型中。随着纬向平均纬向风的发展,固定行星波数1、2和3的振幅发生了显着变化。模拟还显示与观测相一致的中层大气冷却和下层热层加热。该特定SSW的大小适中,属于轻微变暖的类别。在较低的热层中,在该事件期间,日,半日和三级,向东和向西传播的潮汐模式的幅度发生了很大变化。由于变暖的幅度很小,潮汐与平均流和行星波的相互作用很复杂,因此下热层低潮汐振幅与平流层纬向平均波和静止波之间的一一对应关系并不十分明显。 。尽管时间似乎延迟了大约三天,但热圈下部的三月潮汐(TW3)幅度的增加与SSW的关系最明显。长垂直波长TW3潮汐的快速群速度表明起效较快。用于从低层大气直接传播潮汐。日潮和半日潮的幅值变化以及垂直传播较慢的情况,有可能在较低的热圈中相互作用,从而以较长的延迟引入三月潮。较低热层中TW3的增加有望改变电动力响应的局部时间变化。显示出来自WAM的低层热层风的每日变化导致了日间低纬度电场强度的变化,并且在变暖期间,日间垂直漂移会变大并发生得更早,并且下午最低要小些。数值模拟表明,在2009年1月观测到一个主要的SSW可能引起较低的热层电动力学产生较大变化,从而使总电子含量发生较大变化,这是完全可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号