首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Rapid enhancement of low-energy (<100eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms
【24h】

Rapid enhancement of low-energy (<100eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms

机译:基于两个Van Allen Probes案例研究的快速增强型低能量(<100eV)离子通量,响应行星际撞击:对源区和加热机制的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H~+, He~+, and O~+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2 October 2013 shock event, both parallel and perpendicular flux enhancements lasted more than 20 min with larger fluxes observed in the perpendicular direction. In contrast, for the 15 March 2013 shock event, the low-energy perpendicular ion fluxes increased only in the first 5 min during an impulse of electric field, while the parallel flux enhancement lasted more than 30 min. In addition, ionospheric outflows were observed after shock arrivals. From a simple particle motion calculation, we found that the rapid response of low-energy ions is due to drifts of plasmaspheric population by the enhanced electric field. However, the fast acceleration in the perpendicular direction cannot solely be explained by E × B drift but betatron acceleration also plays a role. Adiabatic acceleration may also explain the fast response of the enhanced parallel ion fluxes, while ion outflows may contribute to the enhanced parallel fluxes that last longer than the perpendicular fluxes.
机译:行星际(IP)冲击与地球磁层之间的相互作用表现出许多重要的空间物理学现象,包括低能离子通量增强和粒子加速。为了研究驱动震动引起的低能离子通量增强的机制,我们检查了Van Allen探针位于赤道附近而航天器足迹周围有电离层和地面观测时发生的两个IP冲击事件。我们发现,随着冲击的到来,电磁场增强,低能离子通量(包括H〜+,He〜+和O〜+)在平行和垂直方向上都得到了显着增强。在2013年10月2日的震动事件中,平行和垂直通量增强持续了20分钟以上,并且在垂直方向观察到较大的通量。相反,对于2013年3月15日的电击事件,低能垂直离子通量仅在电场脉冲期间的前5分钟内增加,而平行通量增强持续了30分钟以上。此外,在电击到来后观察到电离层流出。通过简单的粒子运动计算,我们发现低能离子的快速响应是由于增强电场使等离子层人口漂移所致。但是,垂直方向的快速加速度不能仅用E×B漂移来解释,而是电子加速器加速度也起作用。绝热加速度也可以解释增强的平行离子通量的快速响应,而离子流出可能有助于增强的平行离子通量,其持续时间比垂直通量长。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号