...
首页> 外文期刊>Journal of Fluids and Structures >Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex shedding
【24h】

Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex shedding

机译:非定常流动中的极限环振荡主要由间歇性前沿涡旋脱落控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-frequency limit-cycle oscillations of an airfoil at low Reynolds number are studied numerically. This regime is characterized by large apparent-mass effects and intermittent shedding of leading-edge vortices. Under these conditions, leading-edge vortex shedding has been shown to result in favorable consequences such as high lift and efficiencies in propulsion/power extraction, thus motivating this study. The aerodynamic model used in the aeroelastic framework is a potential-flow-based discrete-vortex method, augmented with intermittent leading-edge vortex shedding based on a leading-edge suction parameter reaching a critical value. This model has been validated extensively in the regime under consideration and is computationally cheap in comparison with Navier-Stokes solvers. The structural model used has degrees of freedom in pitch and plunge, and allows for large amplitudes and cubic stiffening. The aeroelastic framework developed in this paper is employed to undertake parametric studies which evaluate the impact of different types of nonlinearity. Structural configurations with pitch-to-plunge frequency ratios close to unity are considered, where the flutter speeds are lowest (ideal for power generation) and reduced frequencies are highest. The range of reduced frequencies studied is two to three times higher than most airfoil studies, a virtually unexplored regime. Aerodynamic nonlinearity resulting from intermittent leading-edge vortex shedding always causes a supercritical Hopf bifurcation, where limit-cycle oscillations occur at freestream velocities greater than the linear flutter speed. The variations in amplitude and frequency of limit-cycle oscillations as functions of aerodynamic and structural parameters are presented through the parametric studies. The excellent accuracy/cost balance offered by the methodology presented in this paper suggests that it could be successfully employed to investigate optimum setups for power harvesting in the low-Reynolds-number regime. (C) 2015 Elsevier Ltd. All rights reserved.
机译:数值研究了低雷诺数的机翼的高频极限循环振荡。这种状态的特征是大的表观质量效应和前沿涡旋的间歇性脱落。在这些条件下,前沿涡旋脱落已被证明会产生有利的结果,例如高升力和推进/功率提取效率,从而推动了这项研究。气动弹性框架中使用的气动模型是基于势流的离散涡旋方法,并根据达到临界值的前沿吸力参数进行了间歇性的前沿涡旋脱落。该模型已在考虑中的方案中得到了广泛验证,与Navier-Stokes求解器相比,该模型在计算上便宜。所使用的结构模型在俯仰和俯冲方面具有自由度,并允许较大的振幅和立方刚度。本文开发的气动弹性框架用于进行参数研究,以评估不同类型的非线性的影响。考虑俯仰与俯冲频率比接近于1的结构配置,其中颤振速度最低(理想的发电功率),而降低的频率最高。研究的降低频率范围比大多数机翼研究高出2到3倍,这实际上是一种未经探索的方案。间歇性的前沿涡旋脱落导致的空气动力学非线性总是会导致超临界霍夫夫分叉,在该处,自由流速度大于线性颤振速度时会出现极限循环振荡。通过参数研究显示了极限循环振荡的幅度和频率随空气动力学和结构参数的变化。本文介绍的方法所提供的出色的精度/成本平衡表明,它可以成功地用于研究低雷诺数系统中功率收集的最佳设置。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号