首页> 外文期刊>Journal of Fluid Mechanics >The pulsatile propagation of a finger of air within a fluid-occluded cylindrical tube
【24h】

The pulsatile propagation of a finger of air within a fluid-occluded cylindrical tube

机译:空气手指在流体封闭的圆柱管内的脉动传播

获取原文
获取原文并翻译 | 示例
           

摘要

We computationally investigate the unsteady pulsatile propagation of a finger of air through a liquid-filled cylindrical rigid tube. The flow field is governed by the unsteady capillary number Ca_Q(t)=μQ (t )/πR~2γ, where R is the tube radius, Q is the dimensional flow rate, t is the dimensional time, μ is the viscosity, and γ is the surface tension. Pulsatility is imposed by Ca_Q(t ) consisting of both mean (Ca_M) and oscillatory (Ca_Ω components such that Ca_Q(t)=Ca_M + Ca_Ω sin(Ωt). Dimensionless frequency and amplitude parameters are defined, respectively, as Ω =μωR/γ and A=2CaΩ/Ω, with ω epresenting the frequency of oscillation. The system is accurately described by steady-state behaviour if CaΩ Ca_M, reverse flow exists during a portion of the cycle, leading to an unsteady regime. In this unsteady regime, converging and diverging surface stagnation points translate dynamically along the interface throughout the cycle and may temporarily separate to create internal stagnation points at high Ω. For Ca_Ω <10Ca_M, the bubble tip pressure drop △P(tip) may be estimated accurately from the pressure measured downstream of the bubble tip when corrections for the downstream viscous component of the pressure drop are applied. The normal stress gradient at the tube wall θτ_n/θz is examined in detail, because this has been shown to be the primary factor responsible for mechanical damage to epithelial cells during pulmonary airway reopening (Bilek, Dee & Gaver III 2003; Kay et al. 2004). In the unsteady regime, local film-thinning produces highθ τ_n/θz at low Ca_Ω; however, film thickening at moderate Ca protects the tube wall from large θτ_n/θ_z. This stress field is highly dynamic and exhibits intriguing spatial and temporal characteristics that may be used to reduce ventilator-induced lung injury.
机译:我们通过计算方法研究了空气的手指通过充满液体的圆柱形刚性管的不稳定脉动传播。流场由不稳定的毛细管数Ca_Q(t)=μQ(t)/πR〜2γ决定,其中R为管半径,Q为尺寸流速,t为尺寸时间,μ为粘度,并且γ是表面张力。脉动性是由均值(Ca_M)和振荡性(Ca_Ω分量组成,因此Ca_Q(t)= Ca_M +Ca_Ωsin(Ωt)组成的Ca_Q(t)分别定义的无量纲频率和幅度参数为Ω=μωR/ γ且A =2CaΩ/Ω,其中ω表示振荡频率,如果CaΩ Ca_M时,在循环的一部分时间内会出现逆流,从而导致在这种不稳定状态下,会聚和发散的表面停滞点会在整个循环中沿界面动态平移,并且可能会暂时分离而在高Ω处产生内部停滞点。对于Ca_Ω<10Ca_M,气泡尖端压力降△P(tip )可以根据当校正压降的下游粘性分量时从气泡尖端下游测得的压力来准确估算得出。详细检查了管壁处的法向应力梯度θτ_n/θz,因为s是导致肺气道重新开放期间上皮细胞机械损伤的主要因素(Bilek,Dee&Gaver III 2003;凯等。 2004)。在不稳定状态下,局部薄膜稀化在低Ca_Ω时产生高θτ_n/θz;但是,在中等Ca浓度下的膜增厚保护了管壁免受较大的θτ_n/θ_z的影响。该应力场是高度动态的,并表现出有趣的时空特征,可用于减少呼吸机引起的肺损伤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号