首页> 外文期刊>Journal of Fluid Mechanics >Nonlinear evolution of hydrodynamically unstable premixed flames
【24h】

Nonlinear evolution of hydrodynamically unstable premixed flames

机译:水动力不稳定预混火焰的非线性演化

获取原文
获取原文并翻译 | 示例
           

摘要

The nonlinear evolution of hydrodynamically unstable flames is studied numerically within the context of a hydrodynamic model, where the flame is confined to a surface separating the fresh mixture from the hot combustion products. The numerical scheme uses a variable-density Navier-Stokes solver in conjunction with a level-set front-capturing technique for the numerical treatment of the propagating front. Unlike most previous studies that were limited to the weakly nonlinear Michelson-Sivashinsky equation valid for small density changes, the present work places no restriction on the density contrast and thus elucidates the effect of thermal expansion on flame dynamics. It is shown that the nonlinear development leads to corrugated flames with a transverse dimension that is significantly larger than the wavelength corresponding to the most amplified disturbance predicted by the linear theory, and which is determined by the overall size of the system. The flame structure consists of wide troughs and relatively narrow cusp-like crests, and propagates 'steadily' at a constant speed, larger than the speed of a planar flame. The propagation speed increases as the cells widen, but eventually reaches a constant value that remains independent of the mixture's composition and of the transverse length. The dependence of the incremental increase in speed on thermal expansion is found to be nearly linear; for realistic values of thermal expansion it may be as large as 15% to 20%. In sufficiently large domains the dynamics is found to be extremely sensitive to background noise that may result, for example, from weak turbulence. Small-scale wrinkles appear sporadically on the flame surface and travel along its surface, causing a significant increase in the overall speed of propagation, up to twice the laminar flame speed.
机译:在流体动力学模型的背景下,对流体力学不稳定火焰的非线性演化进行了数值研究,其中火焰被限制在将新鲜混合物与热燃烧产物隔开的表面上。数值方案将可变密度的Navier-Stokes求解器与水平集前部捕获技术结合使用,以对传播中的前沿进行数值处理。与大多数以前的研究仅限于对微小的密度变化有效的弱非线性Michelson-Sivashinsky方程不同,本研究对密度对比没有任何限制,从而阐明了热膨胀对火焰动力学的影响。结果表明,非线性发展导致波纹火焰的横向尺寸明显大于对应于线性理论预测的最大放大扰动的波长,而该波长取决于系统的整体尺寸。火焰结构由宽的槽和相对较窄的尖状波峰组成,并以恒定速度“稳定”传播,该速度大于平面火焰的速度。传播速度随细胞扩大而增加,但最终达到一个恒定值,该值与混合物的成分和横向长度无关。发现速度的增量增加对热膨胀的依赖性几乎是线性的。对于实际的热膨胀值,它可能高达15%到20%。在足够大的范围内,发现动力学对背景噪声极其敏感,背景噪声可能是由例如弱湍流引起的。小规模的皱纹偶尔会出现在火焰表面并沿着其表面行进,从而导致整体传播速度显着提高,最高可达层状火焰速度的两倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号