首页> 外文期刊>Journal of Fluid Mechanics >Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study
【24h】

Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study

机译:气固两相流中颗粒速度的划分成一个连续的场和一个在空间上不相关的随机分布:理论形式和数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

The velocity distribution of dilute suspensions of heavy particles in gas-solid turbulent flows is investigated. A statistical approach - the mesoscopic Eulerian formalism (MEF) - is developed in which an average conditioned on a realization of the turbulent carrier flow is introduced and enables a decomposition of the instantaneous particle velocity into two contributions. The first is a contribution from an underlying continuous turbulent velocity field shared by all the particles - the mesoscoplic Eulerian particle velocity field (MEPVF) - that accounts for all particle-particle and fluid-particle two-point correlations. The second contribution corresponds to a distribution - the quasi-Brownian velocity distribution (QBVD) - that represents a random velocity component satisfying the molecular chaos assumption that is not spatially correlated and identified with each particle of the system. The MEF is used to investigate properties of statistically stationary particle-laden isotropic turbulence. The carrier flow is computed using direct numerical simulation (DNS) or large-eddy simulation (LES) with discrete particle tracking employed for the dispersed phase. Particle material densities are much larger than that of the fluid and the force of the fluid on the particle is assumed to reduce to the drag contribution. Computations are performed in the dilute regime for which the influences of inter-particle collisions and fluid-turbulence modulation are neglected. The simulations show that increases in particle inertia increase the contribution of the quasi-Brownian component to the particle velocity. The particle velocity field is correlated at larger length scales than the fluid, with the integral length scales of the MEPVF also increasing with particle inertia. Consistent with the previous work of Abrahamson (1975), the MEF shows that in the limiting case of large inertia, particle motion becomes stochastically equivalent to a Brownian motion with a random spatial distribution of positions and velocities. For the current system of statistically stationary isotropic turbulence, both the DNS and LES show that the fraction of the kinetic energy residing in the mesoscopic field decreases with particle inertia as the square root of the ratio of the total particulate-phase kinetic energy to that of the fluid.
机译:研究了气固湍流中重颗粒稀悬浮液的速度分布。开发了一种统计方法-介观欧拉形式主义(MEF)-在其中引入了以实现湍流载流为条件的平均值,该平均值可以将瞬时粒子速度分解为两个贡献。首先是由所有粒子共享的潜在连续湍流速度场(中上欧拉粒子速度场(MEPVF))的贡献,它解释了所有粒子-粒子和流体-粒子两点的相关性。第二个贡献对应于一个分布-准布朗速度分布(QBVD)-代表满足分子混沌假设的随机速度分量,该假设在空间上与系统的每个粒子均不相关且未识别。 MEF用于研究统计静止的满载各向同性湍流的特性。使用直接数值模拟(DNS)或大涡流模拟(LES)并针对分散相采用离散粒子跟踪来计算载流。颗粒材料的密度比流体的密度大得多,并且假定流体对颗粒的作用力会减小阻力。计算是在稀疏状态下进行的,因此忽略了粒子间碰撞和流体湍流调制的影响。仿真表明,粒子惯性的增加会增加准布朗分量对粒子速度的贡献。粒子速度场在比流体更大的长度尺度上相关,而MEPVF的积分长度尺度也随着粒子惯性而增加。与亚伯拉罕森(Abrahamson,1975)的先前工作一致,MEF表明,在大惯性的极限情况下,粒子运动随机地等效于布朗运动,其位置和速度的空间分布随机。对于当前统计上各向同性的统计湍流系统,DNS和LES都表明,存在于介观场中的动能分数随粒子惯性而减小,这是总颗粒相动能与粒子态动能之比的平方根。流体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号