...
首页> 外文期刊>Journal of Fluid Mechanics >A dual-tube model for gas dynamics in fractured nanoporous shale formations
【24h】

A dual-tube model for gas dynamics in fractured nanoporous shale formations

机译:破裂的纳米孔页岩地层中气体动力学的双管模型

获取原文
获取原文并翻译 | 示例
           

摘要

Gas flow through fractured nanoporous shale formations is complicated by a hierarchy of structural features (ranging from nanopores to microseismic and hydraulic fractures) and by several transport mechanisms that differ from the standard viscous flow used in reservoir modelling. In small pores, self-diffusion becomes more important than advection; also, slippage effects and Knudsen diffusion might become relevant at low densities. We derive a nonlinear effective diffusion coefficient that describes the main transport mechanisms in shale-gas production. In dimensionless form, this coefficient depends only on a geometric factor (or dimensionless permeability) and on the kinetic model that describes the gas. To simplify the description of the complex structure of fractured shales, we observe that the production rate is controlled by the flow from the shale matrix (which has the smallest diffusivity) into the fracture network, which is assumed to produce instantaneously. Therefore, we propose to model the flow in the shale matrix and estimate the production rate with a simple bundle-of-dual-tubes model (BoDTM), in which each tube is characterized by two diameters (one for transport and the other for storage). The solution of a single tube is approximately self-similar at early time, but not at late time, when the gas flux decays exponentially owing to the finite length of the tube. To construct a BoDTM, a reliable estimate of the joint statistics of the matrix-porosity parameters is required. This can be either inferred from core measurements or postulated on the basis of some a priori assumptions when information from laboratory and field measurements is scarce. By comparison with field production data from the Barnett shale-gas field, we demonstrate that BoDTM can be calibrated to estimate structural parameters of the shale formation and to predict the cumulative production of shale gas. Our framework has enough flexibility to construct models of increasing complexity that can be employed in the presence of a complex dataset or when more information is available.
机译:穿过破裂的纳米多孔页岩地层的气体流由于结构特征的层次结构(从纳米孔到微地震和水力压裂)而复杂化,并且由于其输运机理与油藏建模中使用的标准粘性流不同,因此变得复杂。在小孔中,自我扩散比对流更为重要。同样,在低密度时,滑移效应和克努森扩散也可能变得重要。我们推导了一个非线性有效扩散系数,该系数描述了页岩气生产中的主要传输机制。在无量纲形式中,该系数仅取决于几何因子(或无量纲渗透率)以及描述气体的动力学模型。为了简化对裂缝性页岩的复杂结构的描述,我们观察到生产速率受从页岩基质(扩散率最小)流入裂缝网络的流量控制,假定该流量是瞬时产生的。因此,我们建议用简单的双管束模型(BoDTM)对页岩基质中的流动进行建模并估算生产率,其中每根管的特征是两个直径(一个用于运输,另一个用于存储) )。当气体流量由于管子的有限长度而呈指数衰减时,单个管子的解决方案在早期时近似自相似,但在晚期时则近似。要构建BoDTM,需要对基质孔隙度参数的联合统计数据进行可靠的估计。可以从岩心测量中推论得出,也可以在实验室和现场测量信息匮乏的情况下,根据一些先验假设进行推测。通过与Barnett页岩气田的现场生产数据进行比较,我们证明可以对BoDTM进行校准,以估算页岩地层的结构参数并预测页岩气的累计产量。我们的框架具有足够的灵活性来构建越来越复杂的模型,可以在存在复杂数据集或有更多信息时使用该模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号