首页> 外文期刊>Journal of Fluid Mechanics >Self-similar decay and mixing of a high-Schmidt-number passive scalar in an oscillating boundary layer in the intermittently turbulent regime
【24h】

Self-similar decay and mixing of a high-Schmidt-number passive scalar in an oscillating boundary layer in the intermittently turbulent regime

机译:在间歇湍流状态下振荡边界层中高施密特数被动标量的自相似衰减和混合

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We performed numerical simulations of dissolved oxygen (DO) transfer from a turbulent flow, driven by periodic boundary-layer turbulence in the intermittent regime, to underlying DO-absorbing organic sediment layers. A uniform initial distribution of oxygen is left to decay (with no re-aeration) as the turbulent transport supplies the sediment with oxygen from the outer layers to be absorbed. A very thin diffusive sublayer at the sediment-water interface (SWI), caused by the high Schmidt number of DO in water, limits the overall decay rate. A decomposition of the instantaneous decaying turbulent scalar field is proposed, which results in the development of similarity solutions that collapse the data in time. The decomposition is then tested against the governing equations, leading to a rigorous procedure for the extraction of an ergodic turbulent scalar field. The latter is composed of a statistically periodic and a steady non-decaying field. Temporal averaging is used in lieu of ensemble averaging to evaluate flow statistics, allowing the investigation of turbulent mixing dynamics from a single flow realization. In spite of the highly unsteady state of turbulence, the monotonically decaying component is surprisingly consistent with experimental and numerical correlations valid for steady high-Schmidt-number turbulent mass transfer. Linearly superimposed onto it is the statistically periodic component, which incorporates all the features of the non-equilibrium state of turbulence. It is modulated by the evolution of the turbulent coherent structures driven by the oscillating boundary layer in the intermittent regime, which are responsible for the violent turbulent production mechanisms. These cause, in turn, a rapid increase of the turbulent mass flux at the edge of the diffusive sublayer. This outer-layer forcing mechanism drives a periodic accumulation of high scalar concentration levels in the near-wall region. The resulting modulated scalar flux across the SWI is delayed by a quarter of a cycle with respect to the wall-shear stress, consistently with the non-equilibrium state of the turbulent mixing.
机译:我们对溶解氧(DO)从紊流中的扰动进行了数值模拟,该扰动在间歇状态下由周期性边界层湍流驱动,转移到下面的吸收DO的有机沉积层中。氧气的均匀初始分布会衰减(无需重新充气),因为湍流输送为沉积物提供了外层要吸收的氧气。沉积物-水界面(SWI)的非常薄的扩散子层是由水中溶解氧的高施密特数引起的,从而限制了总衰减率。提出了瞬时衰减湍流标量场的分解,这导致了相似解的发展,这些相似解会及时破坏数据。然后根据控制方程对分解进行测试,从而得出用于提取遍历湍流标量场的严格程序。后者由统计周期和稳定的非衰减场组成。使用时间平均代替整体平均来评估流量统计信息,从而允许从单个流量实现中研究湍流混合动力学。尽管湍流处于高度不稳定的状态,但是单调衰减的分量出乎意料地与对稳定的高施密特数湍流传质有效的实验和数值关系一致。线性叠加在其上的是统计周期分量,其中包含了非平衡湍流状态的所有特征。它由间歇状态下的振荡边界层驱动的湍流相干结构的演化来调节,这是造成剧烈湍流产生的机制。这些继而导致扩散子层边缘处湍流质量通量的快速增加。这种外层强迫机制驱动了近壁区域中高标量浓度水平的周期性积累。与湍流混合的非平衡状态一致,相对于壁切应力,整个SWI上的调制标量通量延迟了四分之一周期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号