...
首页> 外文期刊>Journal of Fluid Mechanics >Channel flow over large cube, roughness: a direct numerical simulation study
【24h】

Channel flow over large cube, roughness: a direct numerical simulation study

机译:大立方体上的通道流,粗糙度:直接数值模拟研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computations of channel flow 'with rough walls comprising staggered arrays of cubes having various plan area densities are presented and discussed. The cube height h is 12.5 %-of the channel half-depth and Reynolds numbers (u_τh/v) are typically around 700 - well intci the fully rough regime. A direct numerical simulation technique, using an immersed boundary method for the obstacles, was employed with typically 35 million cells. It is "shown that the surface drag is predominantly form drag, which is greatest at an area cover-age around 15 %. The height variation of the axial pressure force across the obstacles weakens significantly as the area coverage decreases, but is always largest near the top of -the obstacles. Mean flow velocity and pressure data allow precise determination of the zero-plane displacement (defined as the height at which the axial surface drag force acts) and this leads to noticeably better fits to the logla* region'than can be obtained by using the zero-plane-displacement merely as a fitting parameter. There are consequent implications for the value of von Karman's constant. As the effective roughness of the surface increases it is also shown that there are significant changes to the structure of the turbulence field around 'the bottom boundary of the inertial sublayer. In distinct contrast to two-dimensional roughness ( longitudinal or transverse bars); increasing-the area-density of this three-dimensional roughness leads to a monotonic-decrease in normalized vertical stress around-the' top Of the roughness 'elements. Normalized turbulence stresses in the outer part of the flows are nonetheless very 'similar to those in smooth-wall flows.
机译:提出并讨论了具有粗糙壁的通道流量的计算,所述粗糙壁包括具有各种平面面积密度的立方​​体的交错阵列。立方体高度h是通道半深度的12.5%,雷诺数(u_τh/ v)通常约为700-完全可以理解为完全粗糙的状态。直接数值模拟技术,使用浸入边界方法处理障碍物,通常用于3500万个像元。 “表明表面阻力主要是阻力,在15%左右的覆盖率时最大。当障碍物穿过时,轴向压力的高度变化会随着面积覆盖率的减小而显着减弱,但在障碍物附近始终最大平均流速和压力数据可以精确确定零平面位移(定义为轴向表面拉力作用的高度),因此与logla *区域相比,拟合度明显更好可以通过仅使用零平面位移作为拟合参数来获得。von Karman常数的值具有相应的含义。随着表面有效粗糙度的增加,还显示出其结构发生了显着变化与惯性子层底部边界周围的湍流场。与二维粗糙度(纵向或横向条形)形成鲜明对比;增加了该区域的密度三维粗糙度导致“粗糙度顶部”元素周围的归一化垂直应力单调减少。然而,在流动的外部,归一化的湍流应力与光滑壁的流动非常相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号